High ionic conductivity,good electrochemical stability,and satisfactory mechanical property are the crucial factors for polymer solid state electrolytes.Herein,fast ion conductor LiAlSiO_4(LASO) is incorporated into p...High ionic conductivity,good electrochemical stability,and satisfactory mechanical property are the crucial factors for polymer solid state electrolytes.Herein,fast ion conductor LiAlSiO_4(LASO) is incorporated into polyethylene oxide(PEO)-based solid-state electrolytes(SSEs).The SSEs containing LASO exhibit enhanced mechanical properties performance compared to pristine PEO-LiTFSI electrolyte.A reduced melting transition temperature of 40.57℃ is enabled by introducing LASO in to PEO-based SSE,which is beneficial to the motion of PEO chain and makes it possible for working at a moderate environment.Coupling with the enhanced motion of PEO,dissociation of the lithium salt,and conducting channel of LASO,the optimized composite polymer SSE exhibits a high ionic conductivity of 4.68×10^(-4),3.16×10^(-4) and 1.62×10^(-4) S cm^(-1) at 60,50 and 40℃,respectively.The corresponding LiFePO_4//Li solid-state battery exhibits high specific capacities of 166,160 and 139 mAh g^(-1) at 0.2 C under 60,40 and 25℃.In addition,it remains 130 mAh g^(-1) at 4.0 C,and maintains 91.74% after 500 cycles at 1.0 C under 60℃.This study provides a simple approach for developing ionic conductor-filled polymer electrolytes in solid-state lithium battery application.展开更多
Potassium ion batteries(PIBs) have been regarded as promising alternatives to lithium ion batteries(LIBs)on account of their abundant resource and low cost in large scale energy storage applications. However,it still ...Potassium ion batteries(PIBs) have been regarded as promising alternatives to lithium ion batteries(LIBs)on account of their abundant resource and low cost in large scale energy storage applications. However,it still remains great challenges to explore suitable electrode materials that can reversibly accommodate large size of potassium ions. Here, we construct oxygen-deficient V_(2)O_(3)nanoparticles encapsulated in amorphous carbon shell(Od-V_(2)O_(3)@C) as anode materials for PIBs by subtly combining the strategies of morphology and deficiency engineering. The MOF derived nanostructure along with uniform carbon coating layer can not only enables fast K+migration and charge transfer kinetics, but also accommodate volume change and maintain structural stability. Besides, the introduction of oxygen deficiency intrinsically tunes the electronic structure of materials according to DFT calculation, and thus lead to improved electrochemical performance. When utilized as anode for PIBs, Od-V_(2)O_(3)@C electrode exhibits superior rate capability(reversible capacities of 262.8, 227.8, 201.5, 179.8, 156.9 mAh/g at 100, 200, 500, 1000 and2000 mA/g, respectively), and ultralong cycle life(127.4 mAh/g after 1000 cycles at 2 A/g). This study demonstrates a feasible way to realize high performance PIBs through morphology and deficiency engineering.展开更多
With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety conce...With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte.展开更多
基金financially supported by the National Natural Science Foundation of China (51804344)the Huxiang Youth Talent Support Program (Grant No. 2019RS2002)+2 种基金the Innovation and Entrepreneurship Project of Hunan Province, China (Grant No. 2018GK5026)the Innovation-Driven Project of Central South University (2020CX027)the Guangdong YangFan Plan for Postdoctor Program。
文摘High ionic conductivity,good electrochemical stability,and satisfactory mechanical property are the crucial factors for polymer solid state electrolytes.Herein,fast ion conductor LiAlSiO_4(LASO) is incorporated into polyethylene oxide(PEO)-based solid-state electrolytes(SSEs).The SSEs containing LASO exhibit enhanced mechanical properties performance compared to pristine PEO-LiTFSI electrolyte.A reduced melting transition temperature of 40.57℃ is enabled by introducing LASO in to PEO-based SSE,which is beneficial to the motion of PEO chain and makes it possible for working at a moderate environment.Coupling with the enhanced motion of PEO,dissociation of the lithium salt,and conducting channel of LASO,the optimized composite polymer SSE exhibits a high ionic conductivity of 4.68×10^(-4),3.16×10^(-4) and 1.62×10^(-4) S cm^(-1) at 60,50 and 40℃,respectively.The corresponding LiFePO_4//Li solid-state battery exhibits high specific capacities of 166,160 and 139 mAh g^(-1) at 0.2 C under 60,40 and 25℃.In addition,it remains 130 mAh g^(-1) at 4.0 C,and maintains 91.74% after 500 cycles at 1.0 C under 60℃.This study provides a simple approach for developing ionic conductor-filled polymer electrolytes in solid-state lithium battery application.
基金financial support from the National Natural Science Foundation of China(Nos.51922042 and 51872098)Fundamental Research Funds for Central Universities,China(No.2020ZYGXZR074)the Scientific and Technological Plan of Qingyuan City,China(2019DZX008)。
文摘Potassium ion batteries(PIBs) have been regarded as promising alternatives to lithium ion batteries(LIBs)on account of their abundant resource and low cost in large scale energy storage applications. However,it still remains great challenges to explore suitable electrode materials that can reversibly accommodate large size of potassium ions. Here, we construct oxygen-deficient V_(2)O_(3)nanoparticles encapsulated in amorphous carbon shell(Od-V_(2)O_(3)@C) as anode materials for PIBs by subtly combining the strategies of morphology and deficiency engineering. The MOF derived nanostructure along with uniform carbon coating layer can not only enables fast K+migration and charge transfer kinetics, but also accommodate volume change and maintain structural stability. Besides, the introduction of oxygen deficiency intrinsically tunes the electronic structure of materials according to DFT calculation, and thus lead to improved electrochemical performance. When utilized as anode for PIBs, Od-V_(2)O_(3)@C electrode exhibits superior rate capability(reversible capacities of 262.8, 227.8, 201.5, 179.8, 156.9 mAh/g at 100, 200, 500, 1000 and2000 mA/g, respectively), and ultralong cycle life(127.4 mAh/g after 1000 cycles at 2 A/g). This study demonstrates a feasible way to realize high performance PIBs through morphology and deficiency engineering.
基金financially supported by the National Natural Science Foundation of China (51804344)the Huxiang Youth Talent Support Program (2019RS2002)+2 种基金the Innovation and Entrepreneurship Project of Hunan Province,China (2018GK5026)the Innovation-Driven Project of Central South University (2020CX027)Guangdong Yang Fan Plan for Postdoctor Program
文摘With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte.