期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mutual Self‑Regulation of d‑Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc‑Air Batteries 被引量:6
1
作者 Sundaram Chandrasekaran Rong Hu +6 位作者 Lei Yao lijun sui Yongping Liu Amor Abdelkader Yongliang Li Xiangzhong Ren Libo Deng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期40-57,共18页
Rechargeable zinc-air batteries(ZABs)are a promising energy conversion device,which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction(ORR)and oxygen evolution ... Rechargeable zinc-air batteries(ZABs)are a promising energy conversion device,which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction(ORR)and oxygen evolution reactions(OER).Herein,we fabricate a range of bifunctional M-N-C(metal-nitrogen-carbon)catalysts containing M-Nx coordination sites and M/MxC nanoparticles(M=Co,Fe,and Cu)using a new class ofγ-cyclodextrin(CD)based metal-organic framework as the precursor.With the two types of active sites interacting with each other in the catalysts,the obtained Fe@C-FeNC and Co@C-CoNC display superior alkaline ORR activity in terms of low half-wave(E1/2)potential(~0.917 and 0.906 V,respectively),which are higher than Cu@C-CuNC(~0.829 V)and the commercial Pt/C(~0.861 V).As a bifunctional electrocatalyst,the Co@C-CoNC exhibits the best performance,showing a bifunctional ORR/OER overpotential(ΔE)of~0.732 V,which is much lower than that of Fe@C-FeNC(~0.831 V)and Cu@C-CuNC(~1.411 V),as well as most of the robust bifunctional electrocatalysts reported to date.Synchrotron X-ray absorption spectroscopy and density functional theory simulations reveal that the strong electronic correlation between metallic Co nanoparticles and the atomic Co-N4 sites in the Co@C-CoNC catalyst can increase the d-electron density near the Fermi level and thus effectively optimize the adsorption/desorption of intermediates in ORR/OER,resulting in an enhanced bifunctional electrocatalytic performance.The Co@C-CoNC-based rechargeable ZAB exhibited a maximum power density of 162.80 mW cm^(−2) at 270.30 mA cm^(−2),higher than the combination of commercial Pt/C+RuO2(~158.90 mW cm^(−2) at 265.80 mA cm^(−2))catalysts.During the galvanostatic discharge at 10 mA cm^(−2),the ZAB delivered an almost stable discharge voltage of 1.2 V for~140 h,signifying the virtue of excellent bifunctional ORR/OER electrocatalytic activity. 展开更多
关键词 CYCLODEXTRIN CD-MOF Single-atom catalyst ORR/OER Zinc-air battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部