This paper proposes a highly sensitive,compact,and low-cost optical fiber salinity sensor based on the Mach-Zehnder interferometer.The sensor is constructed using a single mode fiber(SMF)-no-core fiber-double-C fiber(...This paper proposes a highly sensitive,compact,and low-cost optical fiber salinity sensor based on the Mach-Zehnder interferometer.The sensor is constructed using a single mode fiber(SMF)-no-core fiber-double-C fiber(DCF)-NCF-SMF structure,with the DCF prepared by etching the dual side-hole fiber with HF acid.The DCF’s large-size exposed microfluidic channels solve the previous microstructured optical fiber’s challenging liquid filling and replacement problems.Theoretical simulations and experiments demonstrate that the sensor is suitable for high-sensitivity salinity measurement.The sensor exhibits a high salinity sensitivity of-2.26 nm/‰ in the salinity range of 10‰-50‰,as demonstrated by the experimental results.Additionally,the sensor exhibits some fascinating characteristics,including high repeatability,hysteresis,reversibility,and stability.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grants No.61933004 and 62075036)the National Natural Science Foundation of Liaoning Province(Grant No.2020-YQ-04)+2 种基金the Fundamental Research Funds for the Central Universities(Grants No.N2002019 and N2104019)the State Key Laboratory of Synthetical Automation for Process Industries(Grant No.2013ZCX09)the Hebei Natural Science Foundation(Grant No.F2020501040).
文摘This paper proposes a highly sensitive,compact,and low-cost optical fiber salinity sensor based on the Mach-Zehnder interferometer.The sensor is constructed using a single mode fiber(SMF)-no-core fiber-double-C fiber(DCF)-NCF-SMF structure,with the DCF prepared by etching the dual side-hole fiber with HF acid.The DCF’s large-size exposed microfluidic channels solve the previous microstructured optical fiber’s challenging liquid filling and replacement problems.Theoretical simulations and experiments demonstrate that the sensor is suitable for high-sensitivity salinity measurement.The sensor exhibits a high salinity sensitivity of-2.26 nm/‰ in the salinity range of 10‰-50‰,as demonstrated by the experimental results.Additionally,the sensor exhibits some fascinating characteristics,including high repeatability,hysteresis,reversibility,and stability.