The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy...The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.展开更多
Introduction The neutron capture cross sections are very important in the field of nuclear device design and basic physics research.Hydrogen-free liquid scintillator such as C_(6)D_(6)detectors are widely used in the ...Introduction The neutron capture cross sections are very important in the field of nuclear device design and basic physics research.Hydrogen-free liquid scintillator such as C_(6)D_(6)detectors are widely used in the neutron capture cross-sectional measurements for the low neutron sensitivity and fast time response.The Back-n white neutron source at China Spallation Neutron Source is the first spallation white neutron source in China,and it is suitable for neutron capture cross-sectional measurement.Materials and methods A C_(6)D_(6)detector system was built in the Back-n experimental station.The pulse height weighting technique was used to determine the system’s detection efficiency.The response to gamma rays of the C_(6)D_(6)detector was measured,and the energy resolution function was determined.Monte Carlo simulation with Geant4 code was carried out to get the weighting function of this C_(6)D_(6)detector system.Additionally,the systematic uncertainty of the weighting function was also determined.Conclusion According to the experimental and simulation results,this C_(6)D_(6)detector system can be used to measure neutron capture cross section.展开更多
The^6 Li(n,t)~4 He reaction was measured as the first experiment involving neutron-induced charged particle emission reactions at the CSNS(China Spallation Neutron Source)Back-n white neutron source.The differential c...The^6 Li(n,t)~4 He reaction was measured as the first experiment involving neutron-induced charged particle emission reactions at the CSNS(China Spallation Neutron Source)Back-n white neutron source.The differential cross-sections of the^6 Li(n,t)~4 He reaction at 15 detection angles ranging from 19.2°to 160.8°are obtained from 1.0 eV to 3.0 MeV at 80 neutron energy points;for 50 energy points below 0.1 MeV they are reported for the first time.The results indicate that the anisotropy of the emitted tritium is noticeable above E_n=100 eV.The angle-integrated cross-sections are also obtained.The present differential cross-sections agree in general with the previous evaluations,but there are some differences in the details.More importantly,the present results indicate that the cross-sections of the^6 Li(n,t)~4 He reaction might be overestimated by most evaluations in the 0.5-3.0 MeV region,although they are recommended as standards below 1.0 MeV.展开更多
The capture cross sections of the ^(169)Tm(n,γ)reaction were measured at the back streaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using four C_(6)D_(6) liquid scintillation detect...The capture cross sections of the ^(169)Tm(n,γ)reaction were measured at the back streaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using four C_(6)D_(6) liquid scintillation detectors.The background subtraction,normalization,and correction were carefully considered in the data analysis to obtain accurate cross sections.For the resonance at 3.9 eV,the R-matrix code SAMMY was used to determine the resonance parameters with the internal normalization method.The average capture cross sections of ^(169)Tm for energy between 30 and 300 keV were extracted relative to the ^(197)Au(n,γ)reaction.The measured cross sections of the ^(169)Tm(n,γ)reaction were reported in logarithmically equidistant energy bins with 20 bins per energy decade with a total uncertainty of 5.4%-7.0% in this study and described in terms of average resonance parameters using a Hauser-Feshbach calculation with fluctuations.The point-wise cross sections and the average resonance parameters showed fair agreement with the evaluated values of the ENDF/B-Ⅷ.0 library in the energy region studied.展开更多
Phosphor-converted light-emitting diodes (pc- LEDs), which employ blue LEDs with yellow phosphors to generate white light illumination, is a widely used solid- state lighting source. In order to conduct a phosphor l...Phosphor-converted light-emitting diodes (pc- LEDs), which employ blue LEDs with yellow phosphors to generate white light illumination, is a widely used solid- state lighting source. In order to conduct a phosphor layer coating with high quality on LED chip, a self-adaptive coating technology is introduced in this paper. A slurry coating technique combined with selfexposure method is applied and developed to demonstrate the benefits of selfadaptive coating layer. For self-exposure, the slurry coating is exposed to the blue emission of LED itself other than to ultraviolet (UV) light outside to make photoresist crosslinking. Results of measurement indicate that white LEDs with self-adaptive coating have shown self-adaptability to the angular distribution of intensity of blue light and performed higher spatial color uniformity than those with conventional coating and other conformal coating.展开更多
Differential and angle-integrated cross sections for the 10B(n,α)^7 Li,10B(n,α0)^7 Li and 10B(n,α1)^7 Li^*reactions have been measured at CSNS Back-n white neutron source.Two enriched(90%)10B samples 5.0 cm in diam...Differential and angle-integrated cross sections for the 10B(n,α)^7 Li,10B(n,α0)^7 Li and 10B(n,α1)^7 Li^*reactions have been measured at CSNS Back-n white neutron source.Two enriched(90%)10B samples 5.0 cm in diameter and^85.0μg/cm^2 in thickness each with an aluminum backing were prepared,and back-to-back mounted at the sample holder.The charged particles were detected using the silicon-detector array of the Light-charged Particle Detector Array(LPDA)system.The neutron energy En was determined by TOF(time-of-flight)method,and the valid a events were extracted from the En-Amplitude two-dimensional spectrum.With 15 silicon detectors,the differential cross sections of a-particles were measured from 19.2°to 160.8°.Fitted with the Legendre polynomial series,the(n,a)cross sections were obtained through integration.The absolute cross sections were normalized using the standard cross sections of the 10B(n,α)^7 Li reaction in the 0.3-0.5 MeV neutron energy region.The measurement neutron energy range for the 10B(n,α)^7 Li reaction is 1.0 eV≤En<2.5 Me V(67 energy points),and that for the 10B(n,α0)^7 Li and10B(n,α1)^7 Li^*reactions is 1.0 eV≤En<1.0 MeV(59 energy points).The present results have been analyzed by the resonance reaction mechanism and the level structure of the 11B compound system,and compared with existing measurements and evaluations.展开更多
The Back-n white neutron source(known as Back-n)is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source(CSNS).With its excellent beam properties,e.g.,a neutron flux of app...The Back-n white neutron source(known as Back-n)is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source(CSNS).With its excellent beam properties,e.g.,a neutron flux of approximately 1.8×107 n/cm2/s at 55 m from the spallation target,energy range spanning from 0.5 eV to 200 MeV,and time-of-flight resolution of a few per thousand,along with the equipped physical spectrometers,Back-n is considered to be among the best facilities in the world for carrying out nuclear data measurements.Since its completion and commencement of operation in May 2018,five types of cross-section measurements concerning neutron capture cross-sections,fission cross-sections,total cross-sections,light charged particle emissions,in-beam gamma spectra,and more than forty nuclides have been measured.This article presents an overview of the experimental setup and result analysis on the neutron-induced cross-section measurements and gamma spectroscopy at Back-n in the initial years.展开更多
The angle-differential cross sections of neutron-induced deuteron production from carbon were measured at six neutron energies from 25 to 52 MeV relative to those of n-p elastic scattering at the China Spallation Neut...The angle-differential cross sections of neutron-induced deuteron production from carbon were measured at six neutron energies from 25 to 52 MeV relative to those of n-p elastic scattering at the China Spallation Neutron Source(CSNS)Back-n white neutron source.By employing theΔE-E telescopes of the Light-charged Particle Detector Array(LPDA)system at 15.1°to 55.0°in the laboratory system,ratios of the angle-differential cross sections of the ^(12)C(n,xd)reactions to those of the n-p scattering were measured,and then,the angle-differential cross sections of the ^(12)C(n,xd)reactions were obtained using the angle-differential cross sections of the n-p elastic scattering from the JENDL-4.0/HE-2015 library as the standard.The obtained results are compared with data from previous measurements,all of which are based on mono-energic neutrons,the evaluated data from the JENDL-4.0/HE-2015 library and the ENDF-B/VIII.0 library,and those from theoretical calculations based on INCA code and Talys-1.9 code.Being the first white-neutron-source-based systematic measurement of the angle-differential cross sections of neutron-induced deuteron production reactions on carbon in several tens of MeV,the present work can provide a reference to the data library considering the lack of experimental data.展开更多
基金Supported by the National Key Research and Development Plan(2016YFA0401603)the National Natural Science Foundation of China(11675155,11790321)Foundation of President of China Academy of Engineering Physics(YZJLX2016003)。
文摘The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.
基金the National Natural Science Foundation of China(Grant Nos.11790321 and 11805282)the National Key R&D Program of China(Grant No.2016YFA0401601).
文摘Introduction The neutron capture cross sections are very important in the field of nuclear device design and basic physics research.Hydrogen-free liquid scintillator such as C_(6)D_(6)detectors are widely used in the neutron capture cross-sectional measurements for the low neutron sensitivity and fast time response.The Back-n white neutron source at China Spallation Neutron Source is the first spallation white neutron source in China,and it is suitable for neutron capture cross-sectional measurement.Materials and methods A C_(6)D_(6)detector system was built in the Back-n experimental station.The pulse height weighting technique was used to determine the system’s detection efficiency.The response to gamma rays of the C_(6)D_(6)detector was measured,and the energy resolution function was determined.Monte Carlo simulation with Geant4 code was carried out to get the weighting function of this C_(6)D_(6)detector system.Additionally,the systematic uncertainty of the weighting function was also determined.Conclusion According to the experimental and simulation results,this C_(6)D_(6)detector system can be used to measure neutron capture cross section.
基金Supported by National Key R&D Program of China(2016YFA0401604)National Natural Science Foundation of China(11775006)Science and Technology on Nuclear Data Laboratory and China Nuclear Data Center
文摘The^6 Li(n,t)~4 He reaction was measured as the first experiment involving neutron-induced charged particle emission reactions at the CSNS(China Spallation Neutron Source)Back-n white neutron source.The differential cross-sections of the^6 Li(n,t)~4 He reaction at 15 detection angles ranging from 19.2°to 160.8°are obtained from 1.0 eV to 3.0 MeV at 80 neutron energy points;for 50 energy points below 0.1 MeV they are reported for the first time.The results indicate that the anisotropy of the emitted tritium is noticeable above E_n=100 eV.The angle-integrated cross-sections are also obtained.The present differential cross-sections agree in general with the previous evaluations,but there are some differences in the details.More importantly,the present results indicate that the cross-sections of the^6 Li(n,t)~4 He reaction might be overestimated by most evaluations in the 0.5-3.0 MeV region,although they are recommended as standards below 1.0 MeV.
基金Supported by the National Natural Science Foundation of China(11790321,11805282)the National Key Research and Development Program of China(2016YFA0401601)。
文摘The capture cross sections of the ^(169)Tm(n,γ)reaction were measured at the back streaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using four C_(6)D_(6) liquid scintillation detectors.The background subtraction,normalization,and correction were carefully considered in the data analysis to obtain accurate cross sections.For the resonance at 3.9 eV,the R-matrix code SAMMY was used to determine the resonance parameters with the internal normalization method.The average capture cross sections of ^(169)Tm for energy between 30 and 300 keV were extracted relative to the ^(197)Au(n,γ)reaction.The measured cross sections of the ^(169)Tm(n,γ)reaction were reported in logarithmically equidistant energy bins with 20 bins per energy decade with a total uncertainty of 5.4%-7.0% in this study and described in terms of average resonance parameters using a Hauser-Feshbach calculation with fluctuations.The point-wise cross sections and the average resonance parameters showed fair agreement with the evaluated values of the ENDF/B-Ⅷ.0 library in the energy region studied.
文摘Phosphor-converted light-emitting diodes (pc- LEDs), which employ blue LEDs with yellow phosphors to generate white light illumination, is a widely used solid- state lighting source. In order to conduct a phosphor layer coating with high quality on LED chip, a self-adaptive coating technology is introduced in this paper. A slurry coating technique combined with selfexposure method is applied and developed to demonstrate the benefits of selfadaptive coating layer. For self-exposure, the slurry coating is exposed to the blue emission of LED itself other than to ultraviolet (UV) light outside to make photoresist crosslinking. Results of measurement indicate that white LEDs with self-adaptive coating have shown self-adaptability to the angular distribution of intensity of blue light and performed higher spatial color uniformity than those with conventional coating and other conformal coating.
基金Supported by financially the National Key R&D Program of China(2016YFA0401604)the National Natural Science Foundation of China(11775006)
文摘Differential and angle-integrated cross sections for the 10B(n,α)^7 Li,10B(n,α0)^7 Li and 10B(n,α1)^7 Li^*reactions have been measured at CSNS Back-n white neutron source.Two enriched(90%)10B samples 5.0 cm in diameter and^85.0μg/cm^2 in thickness each with an aluminum backing were prepared,and back-to-back mounted at the sample holder.The charged particles were detected using the silicon-detector array of the Light-charged Particle Detector Array(LPDA)system.The neutron energy En was determined by TOF(time-of-flight)method,and the valid a events were extracted from the En-Amplitude two-dimensional spectrum.With 15 silicon detectors,the differential cross sections of a-particles were measured from 19.2°to 160.8°.Fitted with the Legendre polynomial series,the(n,a)cross sections were obtained through integration.The absolute cross sections were normalized using the standard cross sections of the 10B(n,α)^7 Li reaction in the 0.3-0.5 MeV neutron energy region.The measurement neutron energy range for the 10B(n,α)^7 Li reaction is 1.0 eV≤En<2.5 Me V(67 energy points),and that for the 10B(n,α0)^7 Li and10B(n,α1)^7 Li^*reactions is 1.0 eV≤En<1.0 MeV(59 energy points).The present results have been analyzed by the resonance reaction mechanism and the level structure of the 11B compound system,and compared with existing measurements and evaluations.
基金Supported by the National Key Research and Development Plan(2016YFA0401600)the National Natural Science Foundation of China(11675155,11790321)。
文摘The Back-n white neutron source(known as Back-n)is based on back-streaming neutrons from the spallation target at the China Spallation Neutron Source(CSNS).With its excellent beam properties,e.g.,a neutron flux of approximately 1.8×107 n/cm2/s at 55 m from the spallation target,energy range spanning from 0.5 eV to 200 MeV,and time-of-flight resolution of a few per thousand,along with the equipped physical spectrometers,Back-n is considered to be among the best facilities in the world for carrying out nuclear data measurements.Since its completion and commencement of operation in May 2018,five types of cross-section measurements concerning neutron capture cross-sections,fission cross-sections,total cross-sections,light charged particle emissions,in-beam gamma spectra,and more than forty nuclides have been measured.This article presents an overview of the experimental setup and result analysis on the neutron-induced cross-section measurements and gamma spectroscopy at Back-n in the initial years.
基金Supported by the National Natural Science Foundation of China(11775006)the National Key R&D Program of China(2016YFA0401604)。
文摘The angle-differential cross sections of neutron-induced deuteron production from carbon were measured at six neutron energies from 25 to 52 MeV relative to those of n-p elastic scattering at the China Spallation Neutron Source(CSNS)Back-n white neutron source.By employing theΔE-E telescopes of the Light-charged Particle Detector Array(LPDA)system at 15.1°to 55.0°in the laboratory system,ratios of the angle-differential cross sections of the ^(12)C(n,xd)reactions to those of the n-p scattering were measured,and then,the angle-differential cross sections of the ^(12)C(n,xd)reactions were obtained using the angle-differential cross sections of the n-p elastic scattering from the JENDL-4.0/HE-2015 library as the standard.The obtained results are compared with data from previous measurements,all of which are based on mono-energic neutrons,the evaluated data from the JENDL-4.0/HE-2015 library and the ENDF-B/VIII.0 library,and those from theoretical calculations based on INCA code and Talys-1.9 code.Being the first white-neutron-source-based systematic measurement of the angle-differential cross sections of neutron-induced deuteron production reactions on carbon in several tens of MeV,the present work can provide a reference to the data library considering the lack of experimental data.