期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
N=2 Ramond代数的拟有限单权模分类
1
作者 刘东 裴玉峰 夏利猛 《中国科学:数学》 CSCD 北大核心 2023年第9期1181-1194,共14页
本文对N=2 Ramond代数上所有拟有限单权模进行分类.每一个拟有限单权模都是一个单最高权模,或者一个单最低权模,或者一个权空间维数不超过2的一致有界单模.
关键词 N=2 Ramond代数 VIRASORO代数 拟有限单权模
原文传递
Twisted Whittaker modules over U_(q)(gl_(n+1))
2
作者 limeng xia Kaiming Zhao 《Science China Mathematics》 SCIE CSCD 2023年第10期2191-2202,共12页
As is well known,the classical nonsingular Whittaker modules over quantum groups cannot be defined for the non-A1 type.In this paper,by choosing different generators for the quantum group U_(q)(gl_(n+1)),we introduce ... As is well known,the classical nonsingular Whittaker modules over quantum groups cannot be defined for the non-A1 type.In this paper,by choosing different generators for the quantum group U_(q)(gl_(n+1)),we introduce and study the twisted Whittaker modules over U_(q)(gl_(n+1)).We classify all the simple twisted Whittaker modules with nonsingular Whittaker functions.This agrees with Kostant’s results on Whittaker modules for the simple complex Lie algebras sln+1 as q approaches 1. 展开更多
关键词 quantum group CENTER Whittaker module
原文传递
Note on Co-split Lie Algebras 被引量:4
3
作者 limeng xia 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第5期651-656,共6页
It is proved that, any finite dimensional complex Lie algebra/~ = [Z:, ~:], hence, over a field of characteristic zero, any finite dimensional Lie algebra l: = [/2, ~:] possessing a basis with complex structure co... It is proved that, any finite dimensional complex Lie algebra/~ = [Z:, ~:], hence, over a field of characteristic zero, any finite dimensional Lie algebra l: = [/2, ~:] possessing a basis with complex structure constants, should be a weak co-split Lie algebra. A class of non-semi-simple co-split Lie algebras is given. 展开更多
关键词 Co-split Casimir operator Killing form
原文传递
Majid conjecture: quantum Kac-Moody algebras version 被引量:1
4
作者 Hongmei HU Naihong HU limeng xia 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第3期727-747,共21页
Based on the n-fold tensor product version of the generalized double-bosonization construction,we prove the Majid conjecture of the quantum Kac-Moody algebras version.Particularly,we give explicitly the double-bosoniz... Based on the n-fold tensor product version of the generalized double-bosonization construction,we prove the Majid conjecture of the quantum Kac-Moody algebras version.Particularly,we give explicitly the double-bosonization type-crossing constructions of quantum Kac-Moody algebras for affine types G(1)2,E(1)6,and Tp,q,r,and in this way,we can recover generators of quantum Kac-Moody algebras with braided groups defined by R-matrices in the related braided tensor category.This gives us a better understanding for the algebra structures themselves of the quantum Kac-Moody algebras as a certain extension of module-algebras/module-coalgebras with respect to the related quantum subalgebras of finite types inside. 展开更多
关键词 Double-bosonization quantum Kac-Moody algebras R-MATRIX
原文传递
On the centers of quantum groups of A_n-type 被引量:2
5
作者 Libin Li limeng xia Yinhuo Zhang 《Science China Mathematics》 SCIE CSCD 2018年第2期287-294,共8页
Let g be the finite dimensional simple Lie algebra of type A_n, and let U = U_q(g,Λ)and U= U_q(g,Q)be the quantum groups defined over the weight lattice and over the root lattice, respectively. In this paper, we find... Let g be the finite dimensional simple Lie algebra of type A_n, and let U = U_q(g,Λ)and U= U_q(g,Q)be the quantum groups defined over the weight lattice and over the root lattice, respectively. In this paper, we find two algebraically independent central elements in U for all n ≥ 2 and give an explicit formula of the Casimir elements for the quantum group U = U_q(g,Λ), which corresponds to the Casimir element of the enveloping algebra U(g). Moreover, for n = 2 we give explicitly generators of the center subalgebras of the quantum groups U = U_q(g,Λ) and U = U_q(g,Q). 展开更多
关键词 center quantum group type An Casimir element
原文传递
Classification on irreducible Whittaker modules over quantum group Uq(sl3,∧)
6
作者 limeng xia xiangqian GUO Jiao ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第4期1089-1097,共9页
We define the Whittaker modules over the simply-connected quantum group U_(q)(sl3,∧),where A is the weight lattice of Lie algebra sl3.Then we completely classify all those simple ones.Explicitly,a simple Whittaker mo... We define the Whittaker modules over the simply-connected quantum group U_(q)(sl3,∧),where A is the weight lattice of Lie algebra sl3.Then we completely classify all those simple ones.Explicitly,a simple Whittaker module over U_(q)(sl3,∧)is either a highest weight module,or determined by two parameters z∈C andγ∈C^(*)(up to a Hopf automorphism). 展开更多
关键词 Quantum group SIMPLE Whittaker module Whittaker vector
原文传递
The Polynomial Modules over Quantum Group U_(q)(sl3)
7
作者 limeng xia Qianqian Cai Jiao Zhang 《Algebra Colloquium》 SCIE CSCD 2022年第4期663-668,共6页
Let g be a finite dimensional complex simple Lie algebra with Cartan subalgebraη.Then C[η]has a g-module structure if and only if g is of type A or of type C;this is called the polynomial module of rank one,In the q... Let g be a finite dimensional complex simple Lie algebra with Cartan subalgebraη.Then C[η]has a g-module structure if and only if g is of type A or of type C;this is called the polynomial module of rank one,In the quantum version,the rank one polynomial modules over U_(q)(sl_(2))have been classified.In this paper,we prove that the quantum group U_(q)(sl_(3))has no rank one polynomial module. 展开更多
关键词 quantum group polynomial module rank one
原文传递
Finite dimensional modules over quantum toroidal algebras
8
作者 limeng xia 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第3期593-600,共8页
For all generic q∈C^∗,when g is not of type A1;we prove that the quantum toroidal algebra Uq(gtor)has no nontrivial finite dimensional simple module.
关键词 Quantum toroidal algebra finite dimensional module
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部