期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reversible Al^(3+) storage mechanism in anatase TiO_(2) cathode material for ionic liquid electrolyte-based aluminum-ion batteries 被引量:3
1
作者 Na Zhu Feng Wu +9 位作者 Zhaohua Wang liming ling Haoyi Yang Yaning Gao Shuainan Guo liumin Suo Hong Li Huajie Xu Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期72-80,共9页
Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevert... Rechargeable aluminum ion battery(AIB) with high theoretical specific capacity, abundant elements and low cost engages considerable attention as a promising next generation energy storage and conversion system. Nevertheless, to date, one of the major barriers to pursuit better AIB is the limited applicable cathode materials with the ability to store aluminum highly reversibly. Herein, a highly reversible AIB is proposed using mesoporous TiO2 microparticles(M-TiO2) as the cathode material. The improved performance of Ti O2/Al battery is ascribed to the high ionic conductivity and material stability, which is caused by the stable architecture with a mesoporous microstructure and no random aggregation of secondary particles. In addition, we conducted detailed characterization to gain deeper understanding of the Al^(3+) storage mechanism in anatase Ti O2 for AIB. Our findings demonstrate clearly that Al^(3+)can be reversibly stored in anatase TiO2 by intercalation reactions based on ionic liquid electrolyte. Especially, DFT calculations were used to investigate the accurate insertion sites of aluminum ions in M-Ti O2 and the volume changes of M-TiO2 cells during discharging. As for the controversial side reactions in AIBs, in this work, by normalized calculation, we confirm that M-Ti O2 alone participate in the redox reaction. Moreover, cyclic voltammetry(CV) test was performed to investigate the pseudocapacitive behavior. 展开更多
关键词 Aluminum ion battery Anatase TiO_(2) Al-ion storage Intercalation reaction Pseudocapacitive behavior
下载PDF
Monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts/reduced graphene oxide:A novel high-capacity and long-life composite for potassium-ion battery anodes
2
作者 liming ling Xiwen Wang +9 位作者 Yu Li Chenxiao Lin Dong Xie Min Zhang Yan Zhang Jinjia Wei Huajie Xu Faliang Cheng Chuan Wu Shiguo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期140-151,I0005,共13页
Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by... Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix. 展开更多
关键词 Rational framework with multielectron transfer Novel potassium-ion batteries anode Hydrothermal recrystallization Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts Conductive graphene 3D network Synergistic effect
下载PDF
Asymptotic analysis of multi-valley dark soliton solutions in defocusing coupled Hirota equations 被引量:1
3
作者 Ziwei Jiang liming ling 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第11期38-48,共11页
We construct uniform expressions of such dark soliton solutions encompassing both single-valley and double-valley dark solitons for the defocusing coupled Hirota equation with high-order nonlinear effects utilizing th... We construct uniform expressions of such dark soliton solutions encompassing both single-valley and double-valley dark solitons for the defocusing coupled Hirota equation with high-order nonlinear effects utilizing the uniform Darboux transformation,in addition to proposing a sufficient condition for the existence of the above dark soliton solutions.Furthermore,the asymptotic analysis we perform reveals that collisions for single-valley dark solitons typically exhibit elastic behavior;however,collisions for double-valley dark solitons are generally inelastic.In light of this,we further propose a sufficient condition for the elastic collisions of double-valley dark soliton solutions.Our results offer valuable insights into the dynamics of dark soliton solutions in the defocusing coupled Hirota equation and can contribute to the advancement of studies in nonlinear optics. 展开更多
关键词 coupled Hirota equation uniform Darboux transformation dark soliton solution asymptotic analysis
原文传递
Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries 被引量:1
4
作者 liming ling Ying Bai +4 位作者 Huali Wang Qiao Ni Jiatao Zhang Feng Wu Chuan Wu 《Nano Research》 SCIE EI CAS CSCD 2018年第3期1563-1574,共12页
Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystal... Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystals and particles could be controlled, resulting in pore evolution. Pores for the random aggregation of secondary particles gradually transformed to nanopores originating from the oriented attachment of the primary nanocrystals, resulting in an excellent micro/nanostructure that increased the performance of a sodium-ion battery. The mesoporous TiO2 microparticle anode, with its unique combination of nanocrystals and uniform nanopores, displays super durability (95 mAh/g after 11,000 cycles at I C), high initial efficiency (61.4%), and excellent rate performance (265 and 77 mAh/g at 0.1 and 20 C, respectively). In particular, at slow discharge (0.1 C) and fast charge (5, 50, and 100 C) rates, the anatase TiO2 shows remarkable initial charge capacities of 200, 119, and 56 mAh/g, corresponding to 172, 127, and 56 mAh/g, after 150 cycles, respectively, thus meeting the requirements for fast energy storage. This excellent performance can be attributed to the stability of the material and its high ionic conductivity, resulting from the stable architecture with a mesoporous microstructure and without the random aggregation of secondary particles. A fundamental understanding of the pore structure and controllable pore construction has been proven to be effective in increasing the rate capability and durability of nanostructured electrode materials. 展开更多
关键词 oriented attachment pore evolution mesoporous TiO2 durabilit sodium ion batteries
原文传递
Bounded multi-soliton solutions and their asymptotic analysis for the reversal-time nonlocal nonlinear Schrodinger equation
5
作者 Wei-Jing Tang Zhang-nan Hu liming ling 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第10期1-13,共13页
In this paper, we construct the Darboux transformation(DT) for the reverse-time integrable nonlocal nonlinear Schrodinger equation by loop group method. Then we utilize the DT to derive soliton solutions with zero see... In this paper, we construct the Darboux transformation(DT) for the reverse-time integrable nonlocal nonlinear Schrodinger equation by loop group method. Then we utilize the DT to derive soliton solutions with zero seed. We investigate the dynamical properties for those solutions and present a sufficient condition for the non-singularity of multi-soliton solutions.Furthermore, the asymptotic analysis of bounded multi-solutions has also been established by the determinant formula. 展开更多
关键词 nonlocal nonlinear Schrodinger equation multi-soliton solution SINGULARITY asymptotic analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部