Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the mu...Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.展开更多
基金supported by the Department of Energy (No.DE-FG02-03ER25587)the Office of Naval Research(No.N00014-01-1-0674)an Alfred P.Sloan Research Fellowship and a startup grant from University of Texas at Austin
文摘Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.