为有效开发六盘山地区空中云水资源,提高人工增雨的科学性,需掌握该区域大气水汽的时空分布特征及其原因。利用1989—2018年六盘山地区国家基本站降水观测资料和同期欧洲中期天气预报中心(European Centre for Medium-Range Weather For...为有效开发六盘山地区空中云水资源,提高人工增雨的科学性,需掌握该区域大气水汽的时空分布特征及其原因。利用1989—2018年六盘山地区国家基本站降水观测资料和同期欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析资料(ERA5),分析该区域大气可降水量、比湿、相对湿度、水汽通量等大气水汽要素的时空变化,并从水汽输送、地形作用、浮力频率的影响等方面分析六盘山不同地区水汽条件及降水差异的原因。结果表明:一年中绝大多数时间六盘山山顶及东坡大气水汽条件均优于西坡,大值区主要集中在六盘山系主峰附近,并具有明显的季节变化特征。六盘山东坡,受地形抬升作用引起500 hPa辐散、700 hPa辐合的动力场,在夏季最明显,冬季最弱;浮力频率冬季最高,夏季最低;东坡更高的浮力频率及更陡峭的地形,使重力波效应更为明显,具备更有利的垂直上升扩散条件及更大的降水潜力。展开更多
文摘为有效开发六盘山地区空中云水资源,提高人工增雨的科学性,需掌握该区域大气水汽的时空分布特征及其原因。利用1989—2018年六盘山地区国家基本站降水观测资料和同期欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析资料(ERA5),分析该区域大气可降水量、比湿、相对湿度、水汽通量等大气水汽要素的时空变化,并从水汽输送、地形作用、浮力频率的影响等方面分析六盘山不同地区水汽条件及降水差异的原因。结果表明:一年中绝大多数时间六盘山山顶及东坡大气水汽条件均优于西坡,大值区主要集中在六盘山系主峰附近,并具有明显的季节变化特征。六盘山东坡,受地形抬升作用引起500 hPa辐散、700 hPa辐合的动力场,在夏季最明显,冬季最弱;浮力频率冬季最高,夏季最低;东坡更高的浮力频率及更陡峭的地形,使重力波效应更为明显,具备更有利的垂直上升扩散条件及更大的降水潜力。