When associating data from various sensors to estimate the posture of mobile robots, a crucial problem to be solved is that there may be some delayed measurements. Furthermore, the general multi-sensor data fusion alg...When associating data from various sensors to estimate the posture of mobile robots, a crucial problem to be solved is that there may be some delayed measurements. Furthermore, the general multi-sensor data fusion algorithm is a Kalman filter. In order to handle the problem concerning delayed measurements, this paper investigates a Kalman filter modified to account for the delays. Based on the interpolating measurement, a fusion system is applied to estimate the posture of a mobile robot which fuses the data from the encoder and laser global position system using the extended Kalman filter algorithm. Finally, the posture estimation experiment of the mobile robot is given whose result verifies the feasibility and efficiency of the algorithm.展开更多
文摘When associating data from various sensors to estimate the posture of mobile robots, a crucial problem to be solved is that there may be some delayed measurements. Furthermore, the general multi-sensor data fusion algorithm is a Kalman filter. In order to handle the problem concerning delayed measurements, this paper investigates a Kalman filter modified to account for the delays. Based on the interpolating measurement, a fusion system is applied to estimate the posture of a mobile robot which fuses the data from the encoder and laser global position system using the extended Kalman filter algorithm. Finally, the posture estimation experiment of the mobile robot is given whose result verifies the feasibility and efficiency of the algorithm.