A tunable perfect absorber composed of hexagonal-arranged aluminum nano-disk array embedded in the vanadium dioxide(VO_2) film is proposed. The aim is to achieve the tunability of resonance absorption peak in the visi...A tunable perfect absorber composed of hexagonal-arranged aluminum nano-disk array embedded in the vanadium dioxide(VO_2) film is proposed. The aim is to achieve the tunability of resonance absorption peak in the visible and near-infrared regimes. Numerical results reveal that the absorption peak achieves a large tunability of 76.6% while VO_2 undergoes a structural transition from insulator phase to metallic phase. By optimizing the structural parameters, an average absorption of 95% is achieved from 1242 to 1815 nm at the metallic phase state. In addition, the near unity absorption can be fulfilled in a wide range of incident angle(0°–60°) and under all polarization conditions. The method and results presented here would be beneficial for the design of active optoelectronic devices.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 41675154the Six Major Talent Peak Expert of Jiangsu Province under Grant Nos 2015-XXRJ-014 and R2016L01+1 种基金the Jiangsu 333 High-Level Talent Cultivation Program under Grant No BRA2016425the Research Innovation Program for College Graduates of Jiangsu Province under Grant No KYCX18_1022
文摘A tunable perfect absorber composed of hexagonal-arranged aluminum nano-disk array embedded in the vanadium dioxide(VO_2) film is proposed. The aim is to achieve the tunability of resonance absorption peak in the visible and near-infrared regimes. Numerical results reveal that the absorption peak achieves a large tunability of 76.6% while VO_2 undergoes a structural transition from insulator phase to metallic phase. By optimizing the structural parameters, an average absorption of 95% is achieved from 1242 to 1815 nm at the metallic phase state. In addition, the near unity absorption can be fulfilled in a wide range of incident angle(0°–60°) and under all polarization conditions. The method and results presented here would be beneficial for the design of active optoelectronic devices.