Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intest...Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42℃, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethyithiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to as- sess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed Gl-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). Gl-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of Gl-phase-related proteins by Western blotting Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase Of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.展开更多
Objective:Bovine endometritis is one of the most common reproductive disorders in cattle.The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide(LPS)-induced bo...Objective:Bovine endometritis is one of the most common reproductive disorders in cattle.The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide(LPS)-induced bovine endometrial epithelial cells(bE ECs)and to uncover the underlying mechanisms.Methods:bE ECs were stimulated with different concentrations(1,10,30,50,and 100μg/ml)of LPS for 3,6,9,12,and 18 h.MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin.Quantitative real-time polymerase chain reaction(q RT-PCR)was used to assess gene expression of pro-inflammatory cytokines.Western blotting was used to assess levels of inflammation-related proteins.Results:Treatment of b EECs with 30μg/ml LPS for 12 h induced cell injury and reduced cell viability.Punicalagin(5,10,or 20μg/ml)pretreatment significantly decreased LPS-induced productions of interleukin(IL)-1β,IL-6,IL-8,and tumor necrosis factor-α(TNF-α)in bE ECs.Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB(NF-κB)by suppressing the production of inhibitorκBα(IκBα)and phosphorylation of p65.Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases(MAPKs)including p38,c-Jun N-terminal kinase(JNK),and extracellular signal-regulated kinase(ERK).Conclusions:Punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis.展开更多
Gossypol,a phenolic compound found in the cotton plant,is widely distributed in cottonseed byproducts.Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rum...Gossypol,a phenolic compound found in the cotton plant,is widely distributed in cottonseed byproducts.Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rumen microbial fermentation,the actual mechanisms of detoxification remain unclear.In contrast,the metabolic detoxification of gossypol by Helicoverpa armigera(Lepidoptera:Noctuidae)larvae has achieved great advances.The present review discusses the clinical signs of go ssypol in ruminant animals,as well as summarizing advances in the study of gossypol detoxification in the rumen.It also examines the regulatory roles of several key enzymes in gossypol detoxification and transformation known in H.armigera.With the rapid development of modern molecular biotechnology and-omics technology strategies,evidence increasingly indicates that research into the biological degradation of gossypol in H.armigera larvae and some microbes,in terms of these key enzymes,could provide scientific insights that would underpin future work on microbial gossypol detoxification in the rumen,with the ultimate aim of further alleviating gossypol toxicity in ruminant animals.展开更多
基金Project supported by the National Natural Science Foundation of China(No.31272478)the National Twelve-Five Technological Supported Plan of China(No.2013BAD10B04)+1 种基金the Ministry of Agriculture,Public Service Sectors Agriculture Research Projects(No.201403051-07)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD20130324),China
文摘Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42℃, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethyithiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to as- sess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed Gl-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). Gl-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of Gl-phase-related proteins by Western blotting Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase Of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.
基金supported by the National Key Technology R&D Program of China(No.2013BAD10B04)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD20130324),China
文摘Objective:Bovine endometritis is one of the most common reproductive disorders in cattle.The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide(LPS)-induced bovine endometrial epithelial cells(bE ECs)and to uncover the underlying mechanisms.Methods:bE ECs were stimulated with different concentrations(1,10,30,50,and 100μg/ml)of LPS for 3,6,9,12,and 18 h.MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin.Quantitative real-time polymerase chain reaction(q RT-PCR)was used to assess gene expression of pro-inflammatory cytokines.Western blotting was used to assess levels of inflammation-related proteins.Results:Treatment of b EECs with 30μg/ml LPS for 12 h induced cell injury and reduced cell viability.Punicalagin(5,10,or 20μg/ml)pretreatment significantly decreased LPS-induced productions of interleukin(IL)-1β,IL-6,IL-8,and tumor necrosis factor-α(TNF-α)in bE ECs.Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB(NF-κB)by suppressing the production of inhibitorκBα(IκBα)and phosphorylation of p65.Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases(MAPKs)including p38,c-Jun N-terminal kinase(JNK),and extracellular signal-regulated kinase(ERK).Conclusions:Punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis.
基金supported by the Key Research and Development Project of Ningxia Hui Autonomous Region(2018BBF33006)National Dairy Industry and Technology System grant number CARS-36。
文摘Gossypol,a phenolic compound found in the cotton plant,is widely distributed in cottonseed byproducts.Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rumen microbial fermentation,the actual mechanisms of detoxification remain unclear.In contrast,the metabolic detoxification of gossypol by Helicoverpa armigera(Lepidoptera:Noctuidae)larvae has achieved great advances.The present review discusses the clinical signs of go ssypol in ruminant animals,as well as summarizing advances in the study of gossypol detoxification in the rumen.It also examines the regulatory roles of several key enzymes in gossypol detoxification and transformation known in H.armigera.With the rapid development of modern molecular biotechnology and-omics technology strategies,evidence increasingly indicates that research into the biological degradation of gossypol in H.armigera larvae and some microbes,in terms of these key enzymes,could provide scientific insights that would underpin future work on microbial gossypol detoxification in the rumen,with the ultimate aim of further alleviating gossypol toxicity in ruminant animals.