This study explored the impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using a WRF-based ensemble Kalman filter (EnKF) data assimilation (DA) system. Th...This study explored the impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using a WRF-based ensemble Kalman filter (EnKF) data assimilation (DA) system. The results showed that the performance of radar EnKF DA was quite sensitive to the number of radars being assimilated and the DA timing relative to the landfall of the tropical cyclone (TC). It was found that assimilating radial velocity (Vr) data from all the four operational radars during the 6 h immediately before TC landfall was quite important for the track and rainfall forecasts after the TC made landfall. The TC track forecast error could be decreased by about 43% and the 24-h rainfall forecast skill could be almost tripled. Assimilating Vr data from a single radar outperformed the experiment without DA, though with less improvement compared to the multiple-radar DA experiment. Different forecast performances were obtained by assimilating different radars, which was closely related to the first-time wind analysis increment, the location of moisture transport, the quasi-stationary rainband, and the local convergence line. However, only assimilating Vr data when the TC was farther away from making landfall might worsen TC track and rainfall forecasts. Besides, this work also demonstrated that Vr data from multiple radars, instead of a single radar, should be used for verification to obtain a more reliable assessment of the EnKF performance.展开更多
基金sponsored by the Special Fund for Meteorological Research in the Public Interest from the Ministry of Science and Technology of China(Grant No.GYHY201306004)the National Key Basic Research Program of China(Grant No.2013CB430104)+1 种基金the National Natural Science Foundation of China(Grant Nos.41461164006,41375048 and 41425018)supported by the Ministry of Science and Technology of Taiwan(Grant No.MOST103-2111-M-002-011-MY3)
文摘This study explored the impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using a WRF-based ensemble Kalman filter (EnKF) data assimilation (DA) system. The results showed that the performance of radar EnKF DA was quite sensitive to the number of radars being assimilated and the DA timing relative to the landfall of the tropical cyclone (TC). It was found that assimilating radial velocity (Vr) data from all the four operational radars during the 6 h immediately before TC landfall was quite important for the track and rainfall forecasts after the TC made landfall. The TC track forecast error could be decreased by about 43% and the 24-h rainfall forecast skill could be almost tripled. Assimilating Vr data from a single radar outperformed the experiment without DA, though with less improvement compared to the multiple-radar DA experiment. Different forecast performances were obtained by assimilating different radars, which was closely related to the first-time wind analysis increment, the location of moisture transport, the quasi-stationary rainband, and the local convergence line. However, only assimilating Vr data when the TC was farther away from making landfall might worsen TC track and rainfall forecasts. Besides, this work also demonstrated that Vr data from multiple radars, instead of a single radar, should be used for verification to obtain a more reliable assessment of the EnKF performance.