期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electroacupuncture regulates the stress-injury-repair chain of events after cerebral ischemia/reperfusion injury 被引量:15
1
作者 Peng Shi lin-lin sun +1 位作者 Yi-shuo Lee Ya Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第6期925-930,共6页
Inflammation after stroke is the main cause of cerebral ischemia/reperfusion injury. Cascading events after injury can lead to cell death. Heat shock protein 70 and other endogenous injury-signaling molecules are rele... Inflammation after stroke is the main cause of cerebral ischemia/reperfusion injury. Cascading events after injury can lead to cell death. Heat shock protein 70 and other endogenous injury-signaling molecules are released by damaged cells, which can lead to systemic stress reactions. Protecting the brain through repair begins with the stress-injury-repair signaling chain. This study aimed to verify whether acupuncture acts through this chain to facilitate effective treatment of ischemic stroke. Rat models of cerebral ischemia/reperfusion injury were established by Zea Longa's method, and injury sites were identified by assessing neurological function, 2,3,5-triphenyltetrazolium chloride staining, and hematoxylin-eosin staining. Electroacupuncture at acupoints Baihui(DU20) and Zusanli(ST36) was performed in the model rats with dilatational waves, delivered for 20 minutes a day at 2–100 Hz and an amplitude of 2 m A. We analyzed the blood serum from the rats and found that inflammatory cytokines affected the levels of adrenotrophin and heat shock protein 70, each of which followed a similar bimodal curve. Specifically, electroacupuncture lowered the peak levels of adrenocorticotrophic hormone and heat shock protein 70. Thus, electroacupuncture was able to inhibit excessive stress, reduce inflammation, and promote the repair of neurons, which facilitated healing of ischemic stroke. 展开更多
关键词 repair acupuncture hematoxylin eosin minutes endogenous Acupuncture neurological inflammation staining
下载PDF
Domain wall dynamics in magnetic nanotubes driven by an external magnetic field 被引量:3
2
作者 Zai-Dong Li Yue-Chuan Hu +1 位作者 Peng-Bin He lin-lin sun 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期527-530,共4页
We use the Landau-Lifshitz-Gilbert equation to investigate field-driven domain wall propagation in magnetic nan- otubes. We find that the distortion is maximum as the time becomes infinite and the exact rigid-body sol... We use the Landau-Lifshitz-Gilbert equation to investigate field-driven domain wall propagation in magnetic nan- otubes. We find that the distortion is maximum as the time becomes infinite and the exact rigid-body solutions are obtained analytically. We also find that the velocity increases with increasing the ratio of inner radius and outer radius. That is to say, we can accelerate domain wall motion not only by increasing the magnetic field, but also by reducing the thickness of the nanotubes. 展开更多
关键词 domain wall magnetic nanotubes magnetic field
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部