The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on...The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.展开更多
To improve the bonding strength between the nickel bond and the hub of the electroplated diamond grinding wheel,a hybrid technique was proposed to combine laser prequenching steel substrate and post-electroplating nic...To improve the bonding strength between the nickel bond and the hub of the electroplated diamond grinding wheel,a hybrid technique was proposed to combine laser prequenching steel substrate and post-electroplating nickel.To validate the effectiveness of the proposed technique,AISI 1045 substrate was nickel-coated.The bonding properties between the electroplated nickel coating and substrate with or without laser-discrete-quenching were discussed comparatively by scratch,indentation,and thermal shock tests.The results show that the prequenching treatment leads to phase transformation of AISI 1045 microstructure from the mixed pearlite and ferrite phases into the martensitic phase.Since the martensitic phase is characterized as a high corrosion resistance,the interface of substrate/coating is smooth and flat in the prequenched zone,and the coating is bonded well with the steel substrate.In contrast to the steel substrate without pre-quenching treatment,the proposed technique significantly enhanced the bonding strengths of the electroplated nickel-coating.On one hand,the average hardness of electroplated nickel-coating on the laser pre-quenched zone is increased by 18.7%,and the scratch depth with the same load become narrower and shallower.On the other hand,the coefficient of friction(CoF)and the vibration amplitude are reduced,and the coating is bonded effectively with the substrate to inhibit the crack initialization at the interface.This prevents effectively the coating from peeling off and improves significantly the thermal shock resistance property.展开更多
文摘The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.
基金the National Natural Science Foundation of China(No.51875050)Hunan Provincial Natural Science Foundation of China(No.2019JJ40293)Changsha City Planned Science and Technology Project(No.kq1907088)。
文摘To improve the bonding strength between the nickel bond and the hub of the electroplated diamond grinding wheel,a hybrid technique was proposed to combine laser prequenching steel substrate and post-electroplating nickel.To validate the effectiveness of the proposed technique,AISI 1045 substrate was nickel-coated.The bonding properties between the electroplated nickel coating and substrate with or without laser-discrete-quenching were discussed comparatively by scratch,indentation,and thermal shock tests.The results show that the prequenching treatment leads to phase transformation of AISI 1045 microstructure from the mixed pearlite and ferrite phases into the martensitic phase.Since the martensitic phase is characterized as a high corrosion resistance,the interface of substrate/coating is smooth and flat in the prequenched zone,and the coating is bonded well with the steel substrate.In contrast to the steel substrate without pre-quenching treatment,the proposed technique significantly enhanced the bonding strengths of the electroplated nickel-coating.On one hand,the average hardness of electroplated nickel-coating on the laser pre-quenched zone is increased by 18.7%,and the scratch depth with the same load become narrower and shallower.On the other hand,the coefficient of friction(CoF)and the vibration amplitude are reduced,and the coating is bonded effectively with the substrate to inhibit the crack initialization at the interface.This prevents effectively the coating from peeling off and improves significantly the thermal shock resistance property.