Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle ...Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle on X, and ρ:GLn(k) → GLm(k) a rational GLn(k)-representation of degree at most d such that ρ maps the radical R(GLn(k)) of GLn(k) into the radical R(GLm(k)) of GLm(k). We show that if FXN*(E) is semistable for some integer N ≥ max0 〈 r 〈 m (rm) · logp(dr), then the induced rational GLm(k)-bundle E(GLm(k)) is semistable. As an application, if dim X=n, we get a sufficient condition for the semistability of Frobenius direct image FX*(ρ*(ΩX1)), where ρ*(ΩX1) is the vector bundle obtained from ΩX1 via the rational representation ρ.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11501418)Shanghai Sailing Program(Grant No.15YF1412500)
文摘Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle on X, and ρ:GLn(k) → GLm(k) a rational GLn(k)-representation of degree at most d such that ρ maps the radical R(GLn(k)) of GLn(k) into the radical R(GLm(k)) of GLm(k). We show that if FXN*(E) is semistable for some integer N ≥ max0 〈 r 〈 m (rm) · logp(dr), then the induced rational GLm(k)-bundle E(GLm(k)) is semistable. As an application, if dim X=n, we get a sufficient condition for the semistability of Frobenius direct image FX*(ρ*(ΩX1)), where ρ*(ΩX1) is the vector bundle obtained from ΩX1 via the rational representation ρ.