Erianthus produces substantial biomass,exhibits a good Brix value,and shows wide environmental adaptability,making it a potential biofuel plant.In contrast to closely related sorghum and sugarcane,Erianthus can grow i...Erianthus produces substantial biomass,exhibits a good Brix value,and shows wide environmental adaptability,making it a potential biofuel plant.In contrast to closely related sorghum and sugarcane,Erianthus can grow in degraded soils,thus releasing pressure on agricultural lands used for biofuel production.However,the lack of genomic resources for Erianthus hinders its genetic improvement,thus limiting its potential for biofuel production.In the present study,we generated a chromosome-scale reference genome for Erianthus fulvus Nees.The genome size estimated by flow cytometry was 937 Mb,and the assembled genome size was 902 Mb,covering 96.26%of the estimated genome size.A total of 35065 proteincoding genes were predicted,and 67.89%of the genome was found to be repetitive.A recent wholegenome duplication occurred approximately 74.10 million years ago in the E.fulvus genome.Phylogenetic analysis showed that E.fulvus is evolutionarily closer to S.spontaneum and diverged after S.bicolor.Three of the 10 chromosomes of E.fulvus formed through rearrangements of ancestral chromosomes.Phylogenetic reconstruction of the Saccharum complex revealed a polyphyletic origin of the complex and a sister relationship of E.fulvus with Saccharum sp.,excluding S.arundinaceum.On the basis of the four amino acid residues that provide substrate specificity,the E.fulvus SWEET proteins were classified as monoand disaccharide sugar transporters.Ortho-QTL genes identified for 10 biofuel-related traits may aid in the rapid screening of E.fulvus populations to enhance breeding programs for improved biofuel production.The results of this study provide valuable insights for breeding programs aimed at improving biofuel production in E.fulvus and enhancing sugarcane introgression programs.展开更多
Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome se- quences...Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome se- quences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16- epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe.展开更多
Dear Editor Panax notoginseng (Burk.) F.H. Chen (2n = 2x = 24, common name sanqi or tianql), belonging to the Araliaceae family, is a slow-growing plant species documented in the ancient Chinese medical literature...Dear Editor Panax notoginseng (Burk.) F.H. Chen (2n = 2x = 24, common name sanqi or tianql), belonging to the Araliaceae family, is a slow-growing plant species documented in the ancient Chinese medical literatures for its ability to ameliorate hemostasis and improve blood circulation (Wang et al., 2016). After decades of pharmacological research, a variety of P. notoginseng-specific secondary metabolites (notably ginsenosides, notoginsenosides and gypenosides) were isolated, identified, and implicated in conferring medicinal properties (Wang et al., 2016).展开更多
Dear Editor ,More than 50% of drugs are derived from chemical compounds that have been isolated from various plants (Fabricant and Farnsworth, 2001; Yarnell and Abascal, 2002). With the development of sequencing tec...Dear Editor ,More than 50% of drugs are derived from chemical compounds that have been isolated from various plants (Fabricant and Farnsworth, 2001; Yarnell and Abascal, 2002). With the development of sequencing technology and synthetic biology, we can obtain molecular information from the transcriptomic and genomic data of plants and then utilize bacteria to synthesize desired chemical compounds (Atanasov et al., 2015; Smanski et al., 2016). Increasing numbers of researchers have started to publish omics data generated from herbal plants.展开更多
Dear Editor, Oryza Iongistaminata is an African wild rice species with AA genome type possessing special traits that are highly valued for improving cultivated rice, such as strong resistance to biotic and abiotic str...Dear Editor, Oryza Iongistaminata is an African wild rice species with AA genome type possessing special traits that are highly valued for improving cultivated rice, such as strong resistance to biotic and abiotic stresses (Song et al., 1995) for improving resistance of cultivars, rhizomatousness for perennial breeding (Glover et al., 2010), and self-incompatibility (SI) for new ways to produce hybrid seeds (Ghesquiere, 1986). Deciphering the genome of O. Iongistaminata will be the key to uncovering the mechanism of these hallmark traits and improving cultivated rice.展开更多
CRISPR screening has been broadly used to discover new therapy targets,but these finding’successful clinical transition is still limited.In a recent study published in Nature,Jin et al.1 adopted CRISPR screening to d...CRISPR screening has been broadly used to discover new therapy targets,but these finding’successful clinical transition is still limited.In a recent study published in Nature,Jin et al.1 adopted CRISPR screening to dissect the resistance of hepatocellular carcinoma to lenvatinib,discovering the synergistic effect of EGFR inhibitor(gefitinib)and lenvatinib(multi-tyrosine kinase inhibitor,muti-TKI)combination therapy with encouraging clinical benefits.展开更多
基金supported by grants from the Major Science and Technology Projects in Yunnan Province(202202AE090021)a special project of Yunnan Key Laboratory of Crop Production and Smart Agriculture(202105AG070007)+3 种基金a sub-project of the National Key Research and Development Program of China(2018YFD1000503)the National Natural Science Foundation of China(31960451,31560417)a Key Project of Applied Basic Research Program of Yunnan Province(2015FA024)the ESI Discipline Promotion Program of Yunnan Agricultural University(2019YNAUESIMS01).
文摘Erianthus produces substantial biomass,exhibits a good Brix value,and shows wide environmental adaptability,making it a potential biofuel plant.In contrast to closely related sorghum and sugarcane,Erianthus can grow in degraded soils,thus releasing pressure on agricultural lands used for biofuel production.However,the lack of genomic resources for Erianthus hinders its genetic improvement,thus limiting its potential for biofuel production.In the present study,we generated a chromosome-scale reference genome for Erianthus fulvus Nees.The genome size estimated by flow cytometry was 937 Mb,and the assembled genome size was 902 Mb,covering 96.26%of the estimated genome size.A total of 35065 proteincoding genes were predicted,and 67.89%of the genome was found to be repetitive.A recent wholegenome duplication occurred approximately 74.10 million years ago in the E.fulvus genome.Phylogenetic analysis showed that E.fulvus is evolutionarily closer to S.spontaneum and diverged after S.bicolor.Three of the 10 chromosomes of E.fulvus formed through rearrangements of ancestral chromosomes.Phylogenetic reconstruction of the Saccharum complex revealed a polyphyletic origin of the complex and a sister relationship of E.fulvus with Saccharum sp.,excluding S.arundinaceum.On the basis of the four amino acid residues that provide substrate specificity,the E.fulvus SWEET proteins were classified as monoand disaccharide sugar transporters.Ortho-QTL genes identified for 10 biofuel-related traits may aid in the rapid screening of E.fulvus populations to enhance breeding programs for improved biofuel production.The results of this study provide valuable insights for breeding programs aimed at improving biofuel production in E.fulvus and enhancing sugarcane introgression programs.
文摘Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome se- quences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16- epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe.
基金This work was supported by the Major Science and Technique Programs in Yunnan Province (no. 2016ZF001), National Natural Science Foundation of China (no. U1402262), and the Pilot Project for Establishing Social Service System through Agricultural Science and Education in Yunnan Province, Medical Plant Unit (2014NG003).
文摘Dear Editor Panax notoginseng (Burk.) F.H. Chen (2n = 2x = 24, common name sanqi or tianql), belonging to the Araliaceae family, is a slow-growing plant species documented in the ancient Chinese medical literatures for its ability to ameliorate hemostasis and improve blood circulation (Wang et al., 2016). After decades of pharmacological research, a variety of P. notoginseng-specific secondary metabolites (notably ginsenosides, notoginsenosides and gypenosides) were isolated, identified, and implicated in conferring medicinal properties (Wang et al., 2016).
文摘Dear Editor ,More than 50% of drugs are derived from chemical compounds that have been isolated from various plants (Fabricant and Farnsworth, 2001; Yarnell and Abascal, 2002). With the development of sequencing technology and synthetic biology, we can obtain molecular information from the transcriptomic and genomic data of plants and then utilize bacteria to synthesize desired chemical compounds (Atanasov et al., 2015; Smanski et al., 2016). Increasing numbers of researchers have started to publish omics data generated from herbal plants.
基金This work was supported by the National Natural Science Foundation of China (U1302264) to F.H., the National Basic Research Program of China (2013CB835200, 2013CB835201) and the Department of Sciences and Technology of Yunnan Province (2013GA004) to W.W. and F.H.We would like to thank Xueyan Li of the Kunming Institute of Zoology, Chinese Academy of Science, for helpful discussions. We would also like to thank Andrew Willden for English language editing of the manuscript. No conflict of interest declared.
文摘Dear Editor, Oryza Iongistaminata is an African wild rice species with AA genome type possessing special traits that are highly valued for improving cultivated rice, such as strong resistance to biotic and abiotic stresses (Song et al., 1995) for improving resistance of cultivars, rhizomatousness for perennial breeding (Glover et al., 2010), and self-incompatibility (SI) for new ways to produce hybrid seeds (Ghesquiere, 1986). Deciphering the genome of O. Iongistaminata will be the key to uncovering the mechanism of these hallmark traits and improving cultivated rice.
基金GW is supported by the Startup Fund of CAS Center for Excellence in Molecular Cell Science,the National Natural Science Foundation of China(32170917)the Shanghai Pujiang Program(21PJ1413900)YG is supported by the Construction Fund of Medical Key Disciplines of Hangzhou(2020–2024).
文摘CRISPR screening has been broadly used to discover new therapy targets,but these finding’successful clinical transition is still limited.In a recent study published in Nature,Jin et al.1 adopted CRISPR screening to dissect the resistance of hepatocellular carcinoma to lenvatinib,discovering the synergistic effect of EGFR inhibitor(gefitinib)and lenvatinib(multi-tyrosine kinase inhibitor,muti-TKI)combination therapy with encouraging clinical benefits.