Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluse...Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(...Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af...The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.展开更多
In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production...In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency.展开更多
Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line leng...Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.展开更多
Cluster care,also known as cluster therapy,cluster intervention,or bundled therapy,is a series of evidence-based supportive joint care measures developed to improve the quality of care for specific patients or nursing...Cluster care,also known as cluster therapy,cluster intervention,or bundled therapy,is a series of evidence-based supportive joint care measures developed to improve the quality of care for specific patients or nursing issues.It is highly reliable and can effectively improve patient prognosis.This article summarized the application of cluster nursing care in extracorporeal membrane oxygenation(ECMO)-assisted patients and the problems faced to provide a reference for evidence-based decision-making in clinical practice.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related deaths worldwide,but there is a shortage of effective biomarkers for its diagnosis.AIM To explore blood exosomal micro ribonucleic...BACKGROUND Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related deaths worldwide,but there is a shortage of effective biomarkers for its diagnosis.AIM To explore blood exosomal micro ribonucleic acids(miRNAs)as potential biomarkers for HCC diagnosis.RESULTS The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p.The miRNA profiles also revealed the tumor stages of HCC patients.High expression of miR-455-5p and miR-30c-5p,which significantly correlated with better overall survival in tumor tissues,could also be detected in blood exosomes.Two pairs of miRNAs(miR-584-5p/miR-106-3p and miR-628-3p/miR-941)showed a 94.1%sensitivity and 68.4%specificity to differentiate HCC patients from non-HCC patients.The specificity of the combination was substantially influenced by alcohol consumption habits.CONCLUSION This study suggested that blood exosomal miRNAs can be used as new noninvasive diagnostic tools for HCC.However,their accuracy could be affected by tumor stage and alcohol consumption habits.展开更多
In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an...In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment.展开更多
Heterogenous distribution of crops,feed and livestock across China has halted the circulation of nutrients within the agricultural system and is responsible for massive nutrient losses[1,2].Generated livestock manure ...Heterogenous distribution of crops,feed and livestock across China has halted the circulation of nutrients within the agricultural system and is responsible for massive nutrient losses[1,2].Generated livestock manure exceeded optimal crop requirements in 30%and 50%of over 2300 studied counties when there was improved recycling of nitrogen(N)and phosphorus(P)in the food chain,repectively[2].Most of these counties are located in southern and coastal areas,whereas there is a deficit of livestock manure in northern and western China.Such heterogenous distribution of crop-livestock production led to 4.0 Tg manure N and 0.9 Tg manure P[2],which are economically impossible to recycle and will end up in the surrounding environment.In addition,about 40%of feed protein consumed by domestic livestock production relied on importation,putting China’s livestock production supply at high risk in the post pandemic world[3].Hence,China is facing the twin issues of too many manure nutrients but too little feed nutrients simultaneously.展开更多
Debye-screening effects on the electron-impact excitation(EIE)processes for the dipole-allowed transition 1 s_(2)^(1)S→1 s2 p^(1)P in He-like Al^(11+)and Fe^(24+)ions are investigated using the fully relativistic dis...Debye-screening effects on the electron-impact excitation(EIE)processes for the dipole-allowed transition 1 s_(2)^(1)S→1 s2 p^(1)P in He-like Al^(11+)and Fe^(24+)ions are investigated using the fully relativistic distorted-wave methods with the Debye-Huckel(DH)model potential.Debye-screening effects on the continuum-bound(CB)interaction and target ion are discussed,both of which result in reduction of EIE cross sections.This reduction due to screening on the CB interaction is dominant.The non-spherical and spherical DH potentials are adopted for considering the screening effect on the CB interaction.It is found that the spherical DH potential could significantly overestimate the influence of plasma screening on EIE cross sections for multielectron He-like ions.展开更多
The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and sta...The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results.The results agree well with available measurements in the overlapping energy regions overall.The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels.The datasets presented in this paper,including the excitation cross sections,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.展开更多
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei...After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.展开更多
基金This work was supported by the National Key R&D Program of China(Project No.2019YFA0111900 to C.J.L.and Y.J.,2022YFC3601900 to G.H.L.,2022YFC3601903 to X.H.L.,and 2022YFC3601905)the National Natural Science Foundation of China(Grant Nos.82261160397,82272560,81922017 to C.J.L.and 81930022,91749105 to X.H.L.)+3 种基金the NSFC/RGC Joint Research Scheme,the Research Grants Council(UGC)of the Hong Kong Special Administrative Region and the National Natural Science Foundation of China(NSFC/RGC Project No.N_CUHK483/22 to Y.J.)the Hunan Provincial Science and Technology Department(2023JJ30896 to C.J.L.)the Key Research and Development Program of Hunan Province(2022SK2023 to C.J.L.)the Science and Technology Innovation Program of Hunan Province(2023RC1027 to C.J.L.,2022RC1009 to J.W,and 2022RC3075 to C.Z.).
文摘Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金This work was supported by the National Key Research and Development Program of China(No.2023YFB4203800).
文摘Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.
基金We thank the National Natural Science Foundation of China(52203217 and 21961160720)the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)for financial support.
文摘The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.
文摘In order to reduce the horizontal crossing transportation problems between coal trucks and stripping trucks,large and small vehicles,and transport trucks and belt conveyors at key points of open pit mine in production,the separate transportation mode of underpass bridge and overpass steel trestle is proposed to optimize the open pit development transportation system,so as to solve the practical problems that the horizontal cross of transport vehicles causes vehicle blockage,affects production schedule and production safety.The results show that the horizontal crossing road can be changed into a separate type of overpass steel trestle,which can realize the classified transportation of large and small vehicles,reduce the traffic density,make vehicles with different functions go their own way,eliminate the hidden danger of traffic accidents,and improve the production efficiency.
文摘Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.
文摘Cluster care,also known as cluster therapy,cluster intervention,or bundled therapy,is a series of evidence-based supportive joint care measures developed to improve the quality of care for specific patients or nursing issues.It is highly reliable and can effectively improve patient prognosis.This article summarized the application of cluster nursing care in extracorporeal membrane oxygenation(ECMO)-assisted patients and the problems faced to provide a reference for evidence-based decision-making in clinical practice.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is one of the leading causes of cancer-related deaths worldwide,but there is a shortage of effective biomarkers for its diagnosis.AIM To explore blood exosomal micro ribonucleic acids(miRNAs)as potential biomarkers for HCC diagnosis.RESULTS The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p.The miRNA profiles also revealed the tumor stages of HCC patients.High expression of miR-455-5p and miR-30c-5p,which significantly correlated with better overall survival in tumor tissues,could also be detected in blood exosomes.Two pairs of miRNAs(miR-584-5p/miR-106-3p and miR-628-3p/miR-941)showed a 94.1%sensitivity and 68.4%specificity to differentiate HCC patients from non-HCC patients.The specificity of the combination was substantially influenced by alcohol consumption habits.CONCLUSION This study suggested that blood exosomal miRNAs can be used as new noninvasive diagnostic tools for HCC.However,their accuracy could be affected by tumor stage and alcohol consumption habits.
基金partially supported by Nation Science Foundation of China (61661025, 61661026)Foundation of A hundred Youth Talents Training Program of Lanzhou Jiaotong University (152022)
文摘In recent years,high-speed railways(HSRs)have developed rapidly with a high transportation capacity and high comfort level.A tunnel is a complex high-speed rail terrain environment.It is very important to establish an accurate channel propagation model for a railway tunnel environment to improve the safety of HSR operation.In this paper,a method for finite-state Markov chain(FSMC)channel modeling with least squares fitting based on non-uniform interval division is proposed.First,a path loss model is obtained according to measured data.The communication distance between the transmitter and receiver in the tunnel is non-uniformly divided into several large non-overlapping intervals based on the path loss model.Then,the Lloyd-Max quantization method is used to determine the threshold of the signal-to-noise ratio(SNR)and the channel state quantization value and obtain the FSMC state transition probability matrix.Simulation experiments show that the proposed wireless channel model has a low mean square error(MSE)and can accurately predict the received signal power in a railway tunnel environment.
基金the National Key R&D Program of China(2016YFD0800106)the National Natural Science Foundation of China(31572210,31872403,71961137011)+5 种基金Key Research Program of Frontier Sciences-CAS(QYZDY-SSWSMC014)Key Laboratory of Agricultural Water Resources-CAS(ZD201802)the Key Research Program-CAS(KFJ-STS-ZDTP-053)Hebei Dairy Cattle Innovation Team of Modern Agroindustry Technology Research System,China(HBCT2018120206)the Youth Innovation Promotion Association,CAS(2019101)Outstanding Young Scientists Project of Natural Science Foundation of Hebei(C2019503054).
文摘Heterogenous distribution of crops,feed and livestock across China has halted the circulation of nutrients within the agricultural system and is responsible for massive nutrient losses[1,2].Generated livestock manure exceeded optimal crop requirements in 30%and 50%of over 2300 studied counties when there was improved recycling of nitrogen(N)and phosphorus(P)in the food chain,repectively[2].Most of these counties are located in southern and coastal areas,whereas there is a deficit of livestock manure in northern and western China.Such heterogenous distribution of crop-livestock production led to 4.0 Tg manure N and 0.9 Tg manure P[2],which are economically impossible to recycle and will end up in the surrounding environment.In addition,about 40%of feed protein consumed by domestic livestock production relied on importation,putting China’s livestock production supply at high risk in the post pandemic world[3].Hence,China is facing the twin issues of too many manure nutrients but too little feed nutrients simultaneously.
基金Project supported by the Science Challenge Project(Grant No.TZ2016001)the National Key Research and Development Program of China(Grants Nos.2017YFA0403200 and 2017YFA0402300)+1 种基金the Funds for Innovative Fundamental Research Group Project of Gansu Province,China(Grant No.20JR5RA541)the National Natural Science Foundation of China(Grants Nos.11774037 and 12064041)。
文摘Debye-screening effects on the electron-impact excitation(EIE)processes for the dipole-allowed transition 1 s_(2)^(1)S→1 s2 p^(1)P in He-like Al^(11+)and Fe^(24+)ions are investigated using the fully relativistic distorted-wave methods with the Debye-Huckel(DH)model potential.Debye-screening effects on the continuum-bound(CB)interaction and target ion are discussed,both of which result in reduction of EIE cross sections.This reduction due to screening on the CB interaction is dominant.The non-spherical and spherical DH potentials are adopted for considering the screening effect on the CB interaction.It is found that the spherical DH potential could significantly overestimate the influence of plasma screening on EIE cross sections for multielectron He-like ions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204288,11934004,and 12274040)
文摘The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results.The results agree well with available measurements in the overlapping energy regions overall.The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels.The datasets presented in this paper,including the excitation cross sections,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.
基金We thank the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)+1 种基金the National Natural Science Foundation of China(21961160720 and 52203217)the China Postdoctoral Science Foundation(2021M690805)for financial support.
文摘After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.