期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modified constraint-induced movement therapy enhances cortical plasticity in a rat model of traumatic brain injury:a resting-state functional MRI study
1
作者 Cheng-Cheng Sun Yu-Wen Zhang +10 位作者 Xiang-Xin Xing Qi Yang ling-yun cao Yu-Feng Cheng Jing-Wang Zhao Shao-Ting Zhou Dan-Dan Cheng Ye Zhang Xu-Yun Hua He Wang Dong-Sheng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期410-415,共6页
Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctua... Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctuation(ALFF)metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control co rtical impact(CCI)rat model simulating traumatic brain injury.At 3 days after control co rtical impact model establishment,we found that the mean ALFF(mALFF)signals were decreased in the left motor cortex,somatosensory co rtex,insula cortex and the right motor co rtex,and were increased in the right corpus callosum.After 3 weeks of an 8-hour daily mClMT treatment,the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively.The mALFF signal valu es of left corpus callosum,left somatosensory cortex,right medial prefro ntal cortex,right motor co rtex,left postero dorsal hippocampus,left motor cortex,right corpus callosum,and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group.Finally,we identified brain regions with significantly decreased mALFF valu es at 3 days postoperatively.Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions.Our findings suggest that functional co rtical plasticity changes after brain injury,and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric co rtical remodeling.mALFF values correlate with behavio ral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury. 展开更多
关键词 amplitude of low frequency fluctuation cortical plasticity functional magnetic resonance imaging modified constraint-induced movement therapy traumatic brain injury
下载PDF
Nerve root magnetic stimulation improves locomotor function following spinal cord injury with electrophysiological improvements and cortical synaptic reconstruction 被引量:3
2
作者 Ya Zheng Dan Zhao +6 位作者 Dong-Dong Xue Ye-Ran Mao ling-yun cao Ye Zhang Guang-Yue Zhu Qi Yang Dong-Sheng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期2036-2042,共7页
Following a spinal cord injury,there are usually a number of neural pathways that remain intact in the spinal cord.These residual nerve fibers are important,as they could be used to reconstruct the neural circuits tha... Following a spinal cord injury,there are usually a number of neural pathways that remain intact in the spinal cord.These residual nerve fibers are important,as they could be used to reconstruct the neural circuits that enable motor function.Our group previously designed a novel magnetic stimulation protocol,targeting the motor cortex and the spinal nerve roots,that led to significant improvements in locomotor function in patients with a chronic incomplete spinal cord injury.Here,we investigated how nerve root magnetic stimulation contributes to improved locomotor function using a rat model of spinal cord injury.Rats underwent surgery to clamp the spinal cord at T10;three days later,the rats were treated with repetitive magnetic stimulation(5 Hz,25 pulses/train,20 pulse trains)targeting the nerve roots at the L5-L6 vertebrae.The treatment was repeated five times a week over a period of three weeks.We found that the nerve root magnetic stimulation improved the locomotor function and enhanced nerve conduction in the injured spinal cord.In addition,the nerve root magnetic stimulation promoted the recovery of synaptic ultrastructure in the sensorimotor cortex.Overall,the results suggest that nerve root magnetic stimulation may be an effective,noninvasive method for mobilizing the residual spinal cord pathways to promote the recovery of locomotor function. 展开更多
关键词 evoked potentials H-REFLEX motor activity nerve conduction neural plasticity rehabilitation sensorimotor cortex spinal cord injury synapses transcranial magnetic stimulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部