Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce man...Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce many useful organic chemicals by oxidation,hydrogenation,polymerization,and ring-opening reactions.Among all derivatives,the oxidation product 2,5-furandicarboxylic acid(FDCA)is a promising alternative to petroleum-based terephthalic acid for the synthesis of biodegradable plastics.This review analytically discusses the recent progress in the thermocatalytic,electrocatalytic,and photocatalytic oxidation of HMF into FDCA,including catalyst screening,synthesis processes,and reaction mechanism.Rapid fundamental advances may be possible in non-precious metal and metal-free catalysts that are highly efficient under the base-free conditions,and external field-assisted processes like electrochemical or photoelectrochemical cells.展开更多
Solid-state batteries represent the future of energy storage technology,offering improved safety and energy density.Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solidstate electrolytes-based solid-state lithium batteries...Solid-state batteries represent the future of energy storage technology,offering improved safety and energy density.Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solidstate electrolytes-based solid-state lithium batteries(SSLBs)stand out for their appealingmaterial properties and chemical stability.Yet,their successful deployment depends on conquering interfacial challenges.This review article primarily focuses on the advancement of interfacial engineering for LLZO-based SSLBs.We commence with a concise introduction to solid-state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO-based SSLBs.We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface.Subsequently,we delve into the latest advancements and strategies dedicated to overcoming these challenges,with designated sections on cathode and anode interface design.In the end,we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO-based SSLBs,ultimately contributing to the development of safe and high-performance energy storage solutions.展开更多
基金supported by Chinese Academy of Sciences(QYZDB-SSW-JSC037)Natural Science Foundation of Zhejiang Province(LY19B030003,LQ19B060002)+1 种基金Ningbo Science and Technology Bureau(2018B10056,2019B10096)Fujian Institute of Innovation(FJCXY18020202)。
文摘Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce many useful organic chemicals by oxidation,hydrogenation,polymerization,and ring-opening reactions.Among all derivatives,the oxidation product 2,5-furandicarboxylic acid(FDCA)is a promising alternative to petroleum-based terephthalic acid for the synthesis of biodegradable plastics.This review analytically discusses the recent progress in the thermocatalytic,electrocatalytic,and photocatalytic oxidation of HMF into FDCA,including catalyst screening,synthesis processes,and reaction mechanism.Rapid fundamental advances may be possible in non-precious metal and metal-free catalysts that are highly efficient under the base-free conditions,and external field-assisted processes like electrochemical or photoelectrochemical cells.
基金National Key R&D Program of China,Grant/Award Number:2022YFB3807700National Natural Science Foundation of China,Grant/Award Numbers:U20A20248,52372247+4 种基金Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2020B090919001Shanghai Pujiang Programme,Grant/Award Number:23PJD110China Academy of Engineering Physics,Grant/Award Number:U1930208Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2021QB007Science and Technology Commission of Shanghai Municipality,Grant/Award Number:18DZ2280800。
文摘Solid-state batteries represent the future of energy storage technology,offering improved safety and energy density.Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)solidstate electrolytes-based solid-state lithium batteries(SSLBs)stand out for their appealingmaterial properties and chemical stability.Yet,their successful deployment depends on conquering interfacial challenges.This review article primarily focuses on the advancement of interfacial engineering for LLZO-based SSLBs.We commence with a concise introduction to solid-state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO-based SSLBs.We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface.Subsequently,we delve into the latest advancements and strategies dedicated to overcoming these challenges,with designated sections on cathode and anode interface design.In the end,we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO-based SSLBs,ultimately contributing to the development of safe and high-performance energy storage solutions.