期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
乙烯基吡咯烷酮/乙烯基咪唑聚合物的制备及其防沾染性
1
作者 张森林 孙旭东 +1 位作者 张凌飞 王云 《日用化学工业(中英文)》 CAS 北大核心 2023年第6期658-664,共7页
以N-乙烯基吡咯烷酮(NVP)和N-乙烯基咪唑(NVI)为原料合成了三种不同单体比例的N-乙烯基吡咯烷酮/N-乙烯基咪唑聚合物(VP/VI聚合物),采用乌氏黏度计、傅里叶变化红外光谱(FT-IR)、凝胶渗透色谱(GPC)对聚合物的结构进行了表征,结果表明三... 以N-乙烯基吡咯烷酮(NVP)和N-乙烯基咪唑(NVI)为原料合成了三种不同单体比例的N-乙烯基吡咯烷酮/N-乙烯基咪唑聚合物(VP/VI聚合物),采用乌氏黏度计、傅里叶变化红外光谱(FT-IR)、凝胶渗透色谱(GPC)对聚合物的结构进行了表征,结果表明三种聚合物的K值均在30左右,重均分子量(M_(W))分别为37 848,22 656,8 111。通过紫外可见光光谱(UV-Vis)和防沾染实验对三种VP/VI聚合物的防沾染性进行测试,结果表明,加入VPVI-P,VPVI-5和VPVI-7后,直接大红染液的最大吸收波长(λ_(max))从499 nm分别升至520,527和531 nm,λ_(max)处的吸光度从0.30升至0.39左右;直接深蓝染液的λ_(max)从558 nm升至576 nm左右,λ_(max)处的吸光度从0.15升至0.35,三种聚合物均与直接大红、直接深蓝染料分子有明显相互作用。随着聚合物中NVI组分的增加,VP/VI聚合物的防串色性能得到提升。 展开更多
关键词 乙烯基吡咯烷酮 乙烯基咪唑 VP/VI聚合物 聚乙烯吡咯烷酮 防串色
下载PDF
Remote Sensing Plateau Forest Segmentation with Boundary Preserving Double Loss Function Collaborative Learning
2
作者 Ying Ma Jiaqi zhang +3 位作者 Pengyu Liu Zhihao Wei lingfei zhang Xiaowei Jia 《Journal of New Media》 2022年第4期165-177,共13页
Plateau forest plays an important role in the high-altitude ecosystem,and contributes to the global carbon cycle.Plateau forest monitoring request in-suit data from field investigation.With recent development of the r... Plateau forest plays an important role in the high-altitude ecosystem,and contributes to the global carbon cycle.Plateau forest monitoring request in-suit data from field investigation.With recent development of the remote sensing technic,large-scale satellite data become available for surface monitoring.Due to the various information contained in the remote sensing data,obtain accurate plateau forest segmentation from the remote sensing imagery still remain challenges.Recent developed deep learning(DL)models such as deep convolutional neural network(CNN)has been widely used in image processing tasks,and shows possibility for remote sensing segmentation.However,due to the unique characteristics and growing environment of the plateau forest,generate feature with high robustness needs to design structures with high robustness.Aiming at the problem that the existing deep learning segmentation methods are difficult to generate the accurate boundary of the plateau forest within the satellite imagery,we propose a method of using boundary feature maps for collaborative learning.There are three improvements in this article.First,design a multi input model for plateau forest segmentation,including the boundary feature map as an additional input label to increase the amount of information at the input.Second,we apply a strong boundary search algorithm to obtain boundary value,and propose a boundary value loss function.Third,improve the Unet segmentation network and combine dense block to improve the feature reuse ability and reduces the image information loss of the model during training.We then demonstrate the utility of our method by detecting plateau forest regions from ZY-3 satellite regarding to Sanjiangyuan nature reserve.The experimental results show that the proposed method can utilize multiple feature information comprehensively which is beneficial to extracting information from boundary,and the detection accuracy is generally higher than several state-of-art algorithms.As a result of this investigation,the study will contribute in several ways to our understanding of DL for region detection and will provide a basis for further researches. 展开更多
关键词 Remote sensing forest segmentation boundary preserving double loss function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部