The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth,differentiation,and survival.When the BRAF gene mutates,it can lead to abnormal activation of the signa...The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth,differentiation,and survival.When the BRAF gene mutates,it can lead to abnormal activation of the signaling pathway,which promotes cell proliferation,inhibits cell apoptosis,and ultimately contributes to the occurrence and development of cancer.BRAF mutations are widely present in various cancers,including malignant melanoma,thyroid cancer,colorectal cancer,non-small cell lung cancer,and hairy cell leukemia,among others.BRAF is an important target for the treatment of various solid tumors,and targeted combination therapies,represented by BRAF inhibitors,have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors.展开更多
The urgency of early lung cancer(LC)diagnosis and treatment has been more and more significant.Exhaled breath analysis using gas sensors is a promising way to find out if someone has LC due to its low-cost,non-invasiv...The urgency of early lung cancer(LC)diagnosis and treatment has been more and more significant.Exhaled breath analysis using gas sensors is a promising way to find out if someone has LC due to its low-cost,non-invasive,and real-time monitoring compared with traditional invasive diagnostic techniques.Among sensor-based gas detection techniques,metal oxide semiconductor’s gas sensors are one of the most important types.This review presents the-state-of-art in metal oxide gas sensors for the diagnosis of early LC.First,the exhaled breath biomarkers are described with emphasis on the concentration of abnormal volatile organic compounds(VOCs)caused by the metabolic process of LC cells.Then,the research status of metal oxide gas sensors in LC diagnosis is summarized.The sensing performance and enhancement strategy of biomarkers provided by metal oxide semiconductor materials are reviewed.Another effective way to improve VOC detection performance is to build a gas sensor array.At the same time,various gas sensors combined with self-powered techniques are mentioned to display a broad development prospect in breath diagnosis.Finally,metal oxide gas sensor-based LC diagnosis is prospected.展开更多
3 D highly ordered silver nanoparticles(AgNPs) coated silica photonic crystal beads(Ag/SPCBs) were prepared and exploited as a novel surface enhanced Raman scattering(SERS) substrate.The monodisperse and size-controll...3 D highly ordered silver nanoparticles(AgNPs) coated silica photonic crystal beads(Ag/SPCBs) were prepared and exploited as a novel surface enhanced Raman scattering(SERS) substrate.The monodisperse and size-controlled SPCBs were prepared via self-assembly of silica nanoparticles process using a simple microfluidic device.Then the Ag/SPCBs were easily obtained by in situ growth of AgNPs onto the NH_(2)-modified SPCBs.Field emitting scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDX) were used to characterize the Ag/SPCBs.The effect of silica nanoparticle size and AgNO_(3) concentration on the SERS performance of the resultant Ag/SPCBs substrate were discussed in detail.The results indicate that the Ag/SPCBs have highest SERS signals when silica nanoparticle size is250 nm and AgNO_(3) concentration is 0.8 mg/mL.Using malachite green(MG) as model analyte,the Ag/SPCBs substrate displayed a high sensitivity and a wide linear range for MG.The well-designed Ag/SPCBs show high uniformity and excellent reproducibility,and can be used as an effective SERS substrate for sensitive assay application.展开更多
基金supported by the Natural Science Foundation of China(grant number 82002456)China Postdoctoral Science Foundation(grant number 2022M723207)+10 种基金the Medical Scientific Research Foundation of Zhejiang Province,China(grant number 2023KY666)Zhejiang Traditional Chinese Medicine Science Fund Project(grant number 2024ZL372)Qiantang Cross Fund Project(grant number 2023-16)National Natural Science Foundation of China of Zhejiang Cancer Hospital Cultivation Project(grant number PY2023006)the Medical Scientific Research Foundation of Zhejiang Province,China(grant number 2024KY812)the Natural Science Foundation of Zhejiang Province(grant number LQ24H160036)Beijing Health Technologies Promotion Program[grant number BHTPP2022041]Peking University Clinical Scientist Training Program and the Fundamental Research Funds for the Central Universities[grant number BMU2024PYJH010]Science Foundation of Peking University Cancer Hospital[grant number PY202333]the Beijing Natural Science Foundation[grant number 7232248]Beijing Hospitals Authority Youth Programme[grant number QML20231902].
文摘The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth,differentiation,and survival.When the BRAF gene mutates,it can lead to abnormal activation of the signaling pathway,which promotes cell proliferation,inhibits cell apoptosis,and ultimately contributes to the occurrence and development of cancer.BRAF mutations are widely present in various cancers,including malignant melanoma,thyroid cancer,colorectal cancer,non-small cell lung cancer,and hairy cell leukemia,among others.BRAF is an important target for the treatment of various solid tumors,and targeted combination therapies,represented by BRAF inhibitors,have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors.
基金supported by the Outstanding Youth Foundation of Jiangsu Province of China under Grant No.BK20211548the National Natural Science Foundation of China under Grant No.51872254+1 种基金the Yangzhou City-Yangzhou University Cooperation Foundation under Grant No.YZ2021153the Walloon Region of Belgium through the Interreg V France-Wallonie-Vlaanderen program under PATHACOV project (Grant No.1.1.297).
文摘The urgency of early lung cancer(LC)diagnosis and treatment has been more and more significant.Exhaled breath analysis using gas sensors is a promising way to find out if someone has LC due to its low-cost,non-invasive,and real-time monitoring compared with traditional invasive diagnostic techniques.Among sensor-based gas detection techniques,metal oxide semiconductor’s gas sensors are one of the most important types.This review presents the-state-of-art in metal oxide gas sensors for the diagnosis of early LC.First,the exhaled breath biomarkers are described with emphasis on the concentration of abnormal volatile organic compounds(VOCs)caused by the metabolic process of LC cells.Then,the research status of metal oxide gas sensors in LC diagnosis is summarized.The sensing performance and enhancement strategy of biomarkers provided by metal oxide semiconductor materials are reviewed.Another effective way to improve VOC detection performance is to build a gas sensor array.At the same time,various gas sensors combined with self-powered techniques are mentioned to display a broad development prospect in breath diagnosis.Finally,metal oxide gas sensor-based LC diagnosis is prospected.
基金the financial support from National Natural Science Foundation of China(Nos.21575125,81870033 and 21475116)333 Project and Qinglan Project of Jiangsu Province,Natural Science Foundation of Jiangsu Province(No.BK20191434)+4 种基金Six Talent Peaks Project of Jiangsu Province for Zhanjun Yang and Juan LiHigh-end Talent Support Program of Yangzhou University for Zhanjun Yang and Juan LiPriority Academic Program Development of Jiangsu Higher Education Institution(PAPD)Project for Science and Technology of Yangzhou(No.YZ2020068)Open Research Fund of State Key Laboratory of Analytical Chemistry for Life Science(No.SKLACLS1915)。
文摘3 D highly ordered silver nanoparticles(AgNPs) coated silica photonic crystal beads(Ag/SPCBs) were prepared and exploited as a novel surface enhanced Raman scattering(SERS) substrate.The monodisperse and size-controlled SPCBs were prepared via self-assembly of silica nanoparticles process using a simple microfluidic device.Then the Ag/SPCBs were easily obtained by in situ growth of AgNPs onto the NH_(2)-modified SPCBs.Field emitting scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDX) were used to characterize the Ag/SPCBs.The effect of silica nanoparticle size and AgNO_(3) concentration on the SERS performance of the resultant Ag/SPCBs substrate were discussed in detail.The results indicate that the Ag/SPCBs have highest SERS signals when silica nanoparticle size is250 nm and AgNO_(3) concentration is 0.8 mg/mL.Using malachite green(MG) as model analyte,the Ag/SPCBs substrate displayed a high sensitivity and a wide linear range for MG.The well-designed Ag/SPCBs show high uniformity and excellent reproducibility,and can be used as an effective SERS substrate for sensitive assay application.