The effects of Co2O3 on the crystallization and colorization of lithium aluminosilicate glass ceramic were investigated by using differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron mi...The effects of Co2O3 on the crystallization and colorization of lithium aluminosilicate glass ceramic were investigated by using differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscope (SEM). The results showed that the introduction of Co2O3 not only changed the color of lithium aluminosilicate glass but also affected its crystallization by increasing the crystallizing maximum peak temperature (Tp) and weakening the crystallization ability. In addition, the color of LAS glass ceramics could be achieved by controlling the suitable Co2O3 and appropriate crystallization temperature.展开更多
Lithium-aluminum layered double hydroxides(LiAl-LDH)have been be successfully applied in commercial-scale for lithium extraction from salt lake brine,however,further advancement of their applications is hampered by su...Lithium-aluminum layered double hydroxides(LiAl-LDH)have been be successfully applied in commercial-scale for lithium extraction from salt lake brine,however,further advancement of their applications is hampered by suboptimal Li^(+)adsorption performance and ambiguous extraction process.Herein,a doping engineering strategy was developed to fabricate novel Zn^(2+)-doped LiAl-LDH(LiZnAl-LDH)with remarkable higher Li^(+)adsorption capacity(13.4 mg/g)and selectivity(separation factors of 213,834,171 for Li^(+)/K^(+),Li^(+)/Na^(+),Li^(+)/Mg^(2+),respectively),as well as lossless reusability in Luobupo brine compared to the pristine LiAl-LDH.Further,combining experiments and simulation calculations,it was revealed that the specific surface area,hydrophilic,and surface attraction for Li^(+)of LiZnAl-LDH were significantly improved,reducing the adsorption energy(Ead)and Gibbs free energy(ΔG),thus facilitating the transfer of Li^(+)from brine into interface followed by insertion into voids.Importantly,the intrinsic oxygen vacancies derived from Zn-doping depressed the diffusion energy barrier of Li^(+),which accelerated the diffusion process of Li^(+)in the internal bulk of LiZnAl-LDH.This work provides a general strategy to overcome the existing limitations of Li^(+)recovery and deepens the understanding of Li^(+)extraction on LiAl-LDH.展开更多
High-entropy materials(HEMs)have attracted extensive attention in the field of electrochemical catal-ysis due to their unique properties.However,the preparation of high-entropy catalysts typically relies on high-tempe...High-entropy materials(HEMs)have attracted extensive attention in the field of electrochemical catal-ysis due to their unique properties.However,the preparation of high-entropy catalysts typically relies on high-temperature,energy-intensive,and time-consuming synthesis methods due to their compositional complexity.In this study,a facile low-temperature electrochemical reconstruction approach is adopted to synthesize Ag-decorated septenary Co-Cu-Fe-Mo-Zn-Ag-Ru high-entropy(oxy)hydroxide electro-catalysts for oxygen evolution reaction(OER).By introducing Ag and Ru elements and implanting Ag nanoparticles to co-regulate the electronic structure of the catalysts,the as-prepared catalyst achieves remarkable OER performance with a low overpotential of 298 mV at 100 mA/cm^(2)and a small Tafel slope of 30.1 mV/dec in 1 mol/L KOH.This work offers a valuable strategy for developing high-performance high-entropy OER electrocatalysts.展开更多
SiC honeycomb ceramics with parallel channels and macroporous walls were prepared by combining extrusion molding with pressureless sintering technology in the presence of starch.The extrusion molding constructed honey...SiC honeycomb ceramics with parallel channels and macroporous walls were prepared by combining extrusion molding with pressureless sintering technology in the presence of starch.The extrusion molding constructed honeycomb structure with parallel channels,while the starch formed spherical macropores on the channel walls.The density and bending strength of SiC honeycomb ceramics decreased with the increase of starch content,while the phase compositions did not vary with the starch content.The control in starch addition could adjust the pore structures on the channel walls of SiC honeycomb ceramics.展开更多
It is of great importance to directionally construct advanced carbon host to achieve high-performance carbon/sulfur cathodes for lithium sulfur batteries(LSBs).Herein,we report a unique hollow pumpkinlike carbon with ...It is of great importance to directionally construct advanced carbon host to achieve high-performance carbon/sulfur cathodes for lithium sulfur batteries(LSBs).Herein,we report a unique hollow pumpkinlike carbon with notable rich-wrinkle microstructure and intrinsically dual doping with N&P elements via a facile annealing process of Aspergillus niger spore.Furthermore,highly conductive polar absorbents,Ti C nanoparticles,are in situ implanted into the above Aspergillus niger spore carbon(ANSC)by carbothermal reaction,accordingly forming high-performance ANSC/TiC composite host for sulfur.Impressively,TiC nanoparticles play dual roles of not only pore formation in ANSC matrix but also enhancement of chemical absorption with polysulfides.With the positive synergistic effect between N&P co-doped ANSC matrix and Ti C polar absorbent,the designed ANSC/Ti C-S cathodes show unique advantages including larger accommodation space for sulfur,higher surface area,enhanced conductivity and better chemical absorption with soluble polysulfide intermediates.Consequently,the ANSC/Ti C-S cathodes are endowed with good rate performance(496 mAh/g at 0.5 C)and enhanced long-term cycling stability(736 mAh/g with a capacity retention of 78.8%at 0.1 C after 100 cycles).Our research opens a new door to controllably design advanced composite cathodes from microorganisms for application in lithium sulfur batteries.展开更多
文摘The effects of Co2O3 on the crystallization and colorization of lithium aluminosilicate glass ceramic were investigated by using differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscope (SEM). The results showed that the introduction of Co2O3 not only changed the color of lithium aluminosilicate glass but also affected its crystallization by increasing the crystallizing maximum peak temperature (Tp) and weakening the crystallization ability. In addition, the color of LAS glass ceramics could be achieved by controlling the suitable Co2O3 and appropriate crystallization temperature.
基金supports for this work from National Key R&D Program of China(No.2022YFC2906300)the National Natural Science Foundation of China(No.52204283)+2 种基金the Natural Science Foundation of Hubei Province of China(No.2021CFB554)the Key Project of the Science and Technology Research of Hubei Provincial Department of Education(No.D20221605)the CONACYT through the project A1-S-8817.L.J.Z.would like to thank CONACYT for the scholarship for granting his the scholarship No.847199 during his Ph.D study.
文摘Lithium-aluminum layered double hydroxides(LiAl-LDH)have been be successfully applied in commercial-scale for lithium extraction from salt lake brine,however,further advancement of their applications is hampered by suboptimal Li^(+)adsorption performance and ambiguous extraction process.Herein,a doping engineering strategy was developed to fabricate novel Zn^(2+)-doped LiAl-LDH(LiZnAl-LDH)with remarkable higher Li^(+)adsorption capacity(13.4 mg/g)and selectivity(separation factors of 213,834,171 for Li^(+)/K^(+),Li^(+)/Na^(+),Li^(+)/Mg^(2+),respectively),as well as lossless reusability in Luobupo brine compared to the pristine LiAl-LDH.Further,combining experiments and simulation calculations,it was revealed that the specific surface area,hydrophilic,and surface attraction for Li^(+)of LiZnAl-LDH were significantly improved,reducing the adsorption energy(Ead)and Gibbs free energy(ΔG),thus facilitating the transfer of Li^(+)from brine into interface followed by insertion into voids.Importantly,the intrinsic oxygen vacancies derived from Zn-doping depressed the diffusion energy barrier of Li^(+),which accelerated the diffusion process of Li^(+)in the internal bulk of LiZnAl-LDH.This work provides a general strategy to overcome the existing limitations of Li^(+)recovery and deepens the understanding of Li^(+)extraction on LiAl-LDH.
基金supported by the National Key Research and Development Program of China[grant number 2020YFE0100100]the National Natural Science Foundation of China[grant number 52222103]the Fundamental Research Funds for the Central Universities and the Key Research and Development Program of Sichuan Province(Scientific and Technological Cooperation of Sichuan Province with Institutes and Universities)[grant number 2020YFSY0001].
文摘High-entropy materials(HEMs)have attracted extensive attention in the field of electrochemical catal-ysis due to their unique properties.However,the preparation of high-entropy catalysts typically relies on high-temperature,energy-intensive,and time-consuming synthesis methods due to their compositional complexity.In this study,a facile low-temperature electrochemical reconstruction approach is adopted to synthesize Ag-decorated septenary Co-Cu-Fe-Mo-Zn-Ag-Ru high-entropy(oxy)hydroxide electro-catalysts for oxygen evolution reaction(OER).By introducing Ag and Ru elements and implanting Ag nanoparticles to co-regulate the electronic structure of the catalysts,the as-prepared catalyst achieves remarkable OER performance with a low overpotential of 298 mV at 100 mA/cm^(2)and a small Tafel slope of 30.1 mV/dec in 1 mol/L KOH.This work offers a valuable strategy for developing high-performance high-entropy OER electrocatalysts.
基金supported by the Innovation Fund for Technology-based Firms of China(12C26113303061)High Science&Technique Brainstorm Project of Zhejiang Province of China(No.2012C01032-1).
文摘SiC honeycomb ceramics with parallel channels and macroporous walls were prepared by combining extrusion molding with pressureless sintering technology in the presence of starch.The extrusion molding constructed honeycomb structure with parallel channels,while the starch formed spherical macropores on the channel walls.The density and bending strength of SiC honeycomb ceramics decreased with the increase of starch content,while the phase compositions did not vary with the starch content.The control in starch addition could adjust the pore structures on the channel walls of SiC honeycomb ceramics.
基金supported by Natural Science Funds for Distinguished Young Scholars of Zhejiang Province(No.LR20E020001)National Natural Science Foundation of China(Nos.52073252 and51772272)Foundation of State Key Laboratory of Coal Conversion(No.J20-21-909)。
文摘It is of great importance to directionally construct advanced carbon host to achieve high-performance carbon/sulfur cathodes for lithium sulfur batteries(LSBs).Herein,we report a unique hollow pumpkinlike carbon with notable rich-wrinkle microstructure and intrinsically dual doping with N&P elements via a facile annealing process of Aspergillus niger spore.Furthermore,highly conductive polar absorbents,Ti C nanoparticles,are in situ implanted into the above Aspergillus niger spore carbon(ANSC)by carbothermal reaction,accordingly forming high-performance ANSC/TiC composite host for sulfur.Impressively,TiC nanoparticles play dual roles of not only pore formation in ANSC matrix but also enhancement of chemical absorption with polysulfides.With the positive synergistic effect between N&P co-doped ANSC matrix and Ti C polar absorbent,the designed ANSC/Ti C-S cathodes show unique advantages including larger accommodation space for sulfur,higher surface area,enhanced conductivity and better chemical absorption with soluble polysulfide intermediates.Consequently,the ANSC/Ti C-S cathodes are endowed with good rate performance(496 mAh/g at 0.5 C)and enhanced long-term cycling stability(736 mAh/g with a capacity retention of 78.8%at 0.1 C after 100 cycles).Our research opens a new door to controllably design advanced composite cathodes from microorganisms for application in lithium sulfur batteries.