The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is be...The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.展开更多
For repairing peripheral nerve and spinal cord defects,biomaterial scaffoid-based cell-therapy was emerged as an effective strategy,requiring the positive response of seed cells to biomaterial substrate and environmen...For repairing peripheral nerve and spinal cord defects,biomaterial scaffoid-based cell-therapy was emerged as an effective strategy,requiring the positive response of seed cells to biomaterial substrate and environment signals.Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization.However,the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed.Given that,this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells(SKP-SCs).Chitosanfilm with different ridge/groove size was fabricated and applied for the SKP-SCs induction.Results indicated that SKP-SCs cultured on 30μm size microgroove surface showed better oriented alignment phenotype.Induced SKP-sCs presented similar genic phenotype as repair Schwann cells,increasing expression of c-Jun,neural cell adhesion molecule,and neurotrophic receptor p75.Moreover,SKP-SC-secretome was subjected to cytokine array GS67 assay,data indicated the regulation of paracrine phenotype,a panel of cytokines was verifed up-regulated at secreted level and gene expression level in induced SKP-SCs.These up-regulated cytokines exhibit a series of promotive neural regeneration functions,including cell survival,cell migration,cell proliferation,angiogenesis,axon growth,and cellular organization etc.through bioinformatics analysis.Furthermore,the effectively polarized SKP-SCs-sourced secretome,promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells,and augmented neurites growth of the cultured motoneurons,as well as boosted axonal regrowth of the axotomy-injured motoneurons.Taken together,SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film,displayed the oriented parallel growth,the transition towards repair Schwann cell genic phenotype,and the enhanced paracrine effect on neural regeneration.This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation,that facilitating to provide promising engineered cell-scaffold in neural injury therapies.展开更多
文摘The 3D digitalization and documentation of ancient Chinese architecture is challenging because of architectural complexity and structural delicacy.To generate complete and detailed models of this architecture,it is better to acquire,process,and fuse multi-source data instead of single-source data.In this paper,we describe our work on 3D digital preservation of ancient Chinese architecture based on multi source data.We first briefly introduce two surveyed ancient Chinese temples,Foguang Temple and Nanchan Temple.Then,we report the data acquisition equipment we used and the multi-source data we acquired.Finally,we provide an overview of several applications we conducted based on the acquired data,including ground and aerial image fusion,image and LiDAR(light detection and ranging)data fusion,and architectural scene surface reconstruction and semantic modeling.We believe that it is necessary to involve multi-source data for the 3D digital preservation of ancient Chinese architecture,and that the work in this paper will serve as a heuristic guideline for the related research communities.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20230607)the Natural Science Research Foundation of Jiangsu Higher Education Institutions(Grant No.23KJB180022)+2 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent[2022]the National Natural Science Foundation of China(Grant No.31870977)the Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD].
文摘For repairing peripheral nerve and spinal cord defects,biomaterial scaffoid-based cell-therapy was emerged as an effective strategy,requiring the positive response of seed cells to biomaterial substrate and environment signals.Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization.However,the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed.Given that,this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells(SKP-SCs).Chitosanfilm with different ridge/groove size was fabricated and applied for the SKP-SCs induction.Results indicated that SKP-SCs cultured on 30μm size microgroove surface showed better oriented alignment phenotype.Induced SKP-sCs presented similar genic phenotype as repair Schwann cells,increasing expression of c-Jun,neural cell adhesion molecule,and neurotrophic receptor p75.Moreover,SKP-SC-secretome was subjected to cytokine array GS67 assay,data indicated the regulation of paracrine phenotype,a panel of cytokines was verifed up-regulated at secreted level and gene expression level in induced SKP-SCs.These up-regulated cytokines exhibit a series of promotive neural regeneration functions,including cell survival,cell migration,cell proliferation,angiogenesis,axon growth,and cellular organization etc.through bioinformatics analysis.Furthermore,the effectively polarized SKP-SCs-sourced secretome,promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells,and augmented neurites growth of the cultured motoneurons,as well as boosted axonal regrowth of the axotomy-injured motoneurons.Taken together,SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film,displayed the oriented parallel growth,the transition towards repair Schwann cell genic phenotype,and the enhanced paracrine effect on neural regeneration.This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation,that facilitating to provide promising engineered cell-scaffold in neural injury therapies.