Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of B...Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be_3 C_2, which has been reported to be a 2 D Dirac material, we construct the other three 2 D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling(SOC)gaps, Be_3 C_2 and Be_3 Si_2 are 2 D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene.For Be3 Ge2 and Be_3 Sn_2,the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2 D Dirac materials, but also open an avenue to track new 2 DTI.展开更多
This study analyzed soil moisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 200...This study analyzed soil moisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.The surface soil moisture was severely affected by seasonal changes in the source region of the Yangtze River,especially in the soil from 0 to 40 cm.However,seasonal variation of soil moisture deeper than 40 cm was different from that in the upper layer.Soil moisture below 40 cm wasn't affected by the seasonal variation.Soil moisture from 0 to 50 cm and the average thickness of wind deposition showed a positive correlation in the study area from 2005 to 2016.For environmental protection in the source region of the Yangtze River,wind deposition played a role in water retention.Similarly,a positive correlation also existed between the average thickness of wind erosion and soil moisture.Deep-soil moisture was the key factor for vegetation structure on the Qinghai?Tibet Plateau.The results are also helpful for further understanding the variation of soil moisture on the Tibetan Plateau and providing a scientific basis for effectively protecting and controlling the ecological environment in the future.展开更多
The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional the...The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.展开更多
Bulk coal combustion in rural households is a major contributor to PM_(2.5)pollution in Northern China[1,2].To promote the energy transition and reduce bulk coal combustion for heating in rural areas,China initiated t...Bulk coal combustion in rural households is a major contributor to PM_(2.5)pollution in Northern China[1,2].To promote the energy transition and reduce bulk coal combustion for heating in rural areas,China initiated the Winter Clean Heating Action Plan in Rural Northern China in 2017,hereinafter referred to as rural clean heating(RCH)[3].The 2+26 region,comprising Beijing,Tianjin,and 26 other municipalities in the surrounding area(Fig.S1 online),is the key implementation area for the RCH.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11674136 and 11564022)the Thousand Talents Plan-the Recruitment Program for Young Professionals,China(Grant No.1097816002)+4 种基金Yunnan Province for Recruiting High-Caliber Technological Talents,China(Grant No.1097816002)Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders,China(Grant No.2017HB010)the Academic Qinglan Project of Kunming University of Science and Technology(KUST),China(Grant No.1407840010)the Analysis and Testing Fund of KUST,China(Grant No.2017M20162230010)the High-level Talents of KUST,China(Grant No.1411909425)
文摘Using first-principle calculations, we predict a new family of stable two-dimensional(2 D) topological insulators(TI),monolayer Be_3 X_2(X = C,Si, Ge, Sn) with honeycomb Kagome lattice. Based on the configuration of Be_3 C_2, which has been reported to be a 2 D Dirac material, we construct the other three 2 D materials and confirm their stability according to their chemical bonding properties and phonon-dispersion relationships. Because of their tiny spin-orbit coupling(SOC)gaps, Be_3 C_2 and Be_3 Si_2 are 2 D Dirac materials with high Fermi velocity at the same order of magnitude as that of graphene.For Be3 Ge2 and Be_3 Sn_2,the SOC gaps are 1.5 meV and 11.7 meV, and their topological nontrivial properties are also confirmed by their semi-infinite Dirac edge states. Our findings not only extend the family of 2 D Dirac materials, but also open an avenue to track new 2 DTI.
基金supported by the Discipline Construction Fund Project of Gansu Agricultural University(GSAU-XKJS-2018-109)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University+3 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2018-kb01)National"Plan of Ten Thousand People"Youth Top Talent Project,the Youth Innovation Promotion Association,CAS(2013274)Open funding from the Key Laboratory of Mountain Hazards and Earth Surface Process the open funding from State Key Laboratory of Loess and Quaternary Geology(SKLLQG1814)National Key R&D Program of China(2017YFC0404305)
文摘This study analyzed soil moisture,soil erosion,and vegetation in the source region of the Yangtze River from 2005 to 2016.We found that soil moisture showed an increasing trend from 2005 to 2009 but decreased from 2009 to 2016.The surface soil moisture was severely affected by seasonal changes in the source region of the Yangtze River,especially in the soil from 0 to 40 cm.However,seasonal variation of soil moisture deeper than 40 cm was different from that in the upper layer.Soil moisture below 40 cm wasn't affected by the seasonal variation.Soil moisture from 0 to 50 cm and the average thickness of wind deposition showed a positive correlation in the study area from 2005 to 2016.For environmental protection in the source region of the Yangtze River,wind deposition played a role in water retention.Similarly,a positive correlation also existed between the average thickness of wind erosion and soil moisture.Deep-soil moisture was the key factor for vegetation structure on the Qinghai?Tibet Plateau.The results are also helpful for further understanding the variation of soil moisture on the Tibetan Plateau and providing a scientific basis for effectively protecting and controlling the ecological environment in the future.
基金the National Natural Science Foundation of China(Grant Nos.11674136 and 11564022)Yunnan Province for Recruiting High-Caliber Technological Talents,China(Grant No.1097816002)+3 种基金Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders,China(Grant No.2017HB010)the Academic Qinglan Project of KUST(Grant No.1407840010)the Analysis and Testing Fund of KUST(Grant No.2017M20162230010)the High-level Talents of KUST(Grant No.1411909425)。
文摘The fascinating Dirac cone in honeycomb graphene,which underlies many unique electronic properties,has inspired the vast endeavors on pursuing new two-dimensional(2D)Dirac materials.Based on the density functional theory method,a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted.The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions.Importantly,the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV,which has an intrinsic Dirac cone arising from the special hexagonal lattice structure.Hole doping leads to the spin polarization of the electron,which results in a Dirac half-metal feature with single-spin Dirac fermion.This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.
基金supported by the National Natural Science Foundation of China(72074155,72074137,72374107)the Shandong Province Natural Science Foundation(ZR2021YQ27)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20230062)the National Key R&D Program of China(2022YFF0802504)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_1223)。
文摘Bulk coal combustion in rural households is a major contributor to PM_(2.5)pollution in Northern China[1,2].To promote the energy transition and reduce bulk coal combustion for heating in rural areas,China initiated the Winter Clean Heating Action Plan in Rural Northern China in 2017,hereinafter referred to as rural clean heating(RCH)[3].The 2+26 region,comprising Beijing,Tianjin,and 26 other municipalities in the surrounding area(Fig.S1 online),is the key implementation area for the RCH.