Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w...Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.展开更多
[ Objectives ] This study was conducted to investigate the genetic diversity of 20 lotus (Nelumbo nucifera Gaertn) samples. [ Methods ] On this optimal ISSR amplification system, 16 primers were screened with good p...[ Objectives ] This study was conducted to investigate the genetic diversity of 20 lotus (Nelumbo nucifera Gaertn) samples. [ Methods ] On this optimal ISSR amplification system, 16 primers were screened with good polymorphism, and the DNA was used to amplify the 20 plant samples. [ R^ults] The 16 primers produced 225 loci, of which 170 were polymorphic, and the polymorphic loci percentage was up to 75.56%. The genetic similarity coefficients between the 20 vari- eties ranged from 0. 577 8 to 0.951 1, which were calculated by POPGENE32. The 20 varieties by UPMGA analysis could be clustered into 2 groups, the first of which included Baiyangdian red lotus and Donggua lotus, and other varieties was included in the second group. [ Conchmions] ISSR molecular markers could be effectively used in genetic diversity and fingerprint analysis for different lotus varieties.展开更多
Dendrocalamus latiflorus Munro is a woody clumping bamboo with rapid shoot growth.Both genetic transformation and clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)gene...Dendrocalamus latiflorus Munro is a woody clumping bamboo with rapid shoot growth.Both genetic transformation and clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)gene editing techniques are available for D.latiflorus,enabling reverse genetic approaches.Thus,D.latiflorus has the potential to be a model bamboo species.However,the genome sequence of D.latiflorus has remained unreported due to its polyploidy and large genome size.Here,we sequenced the D.latiflorus genome and assembled it into three allele-aware subgenomes(AABBCC),representingthe largest genome of a major bamboo species.We assembled 70 allelic chromosomes(2,737 Mb)for hexaploid D.latiflorus using both singlemolecule sequencing from the Pacific Biosciences(Pac Bio)Sequel platform and chromosome conformation capture sequencing(Hi-C).Repetitive sequences comprised 52.65%of the D.latiflorus genome.We annotated 135231 protein-coding genes in the genome based on transcriptomes from eight different tissues.Transcriptome sequencing using RNA-Seq and Pac Bio singlemolecule real-time long-read isoform sequencing revealed highly differential alternative splicing(AS)between non-abortive and abortive shoots,suggesting that AS regulates the abortion rate of bamboo shoots.This high-quality hexaploid genome and comprehensive strand-specific transcriptome datasets for this Poaceae family member will pave the way for bamboo research using D.latiflorus as a model species.展开更多
Dear Editor,African swine fever virus(ASFV),the sole member of the family Asfarviridae,is the causative agent of African swine fever(ASF),a viral disease that leads to high mortality in domestic pigs.Since firstly ide...Dear Editor,African swine fever virus(ASFV),the sole member of the family Asfarviridae,is the causative agent of African swine fever(ASF),a viral disease that leads to high mortality in domestic pigs.Since firstly identified in Kenya in the 1920s,ASFV has been prevalent in Africa,Europe,and Russian Federation(Sanchez et al.,2019).Recently,ASFV was introduced to Asian countries including China,Mongolia,Vietnam,Cambodia,Laos and South Korea,which lead to huge economic losses to local pig industries(Li and Tian,2018;Gaudreault and Richt,2019).The first case of ASFV in China was reported in August 2018(Zhou et al.,2018).展开更多
基金funded by the National Natural Science Foundation of China(42071300)the Fujian Province Natural Science(2020J01504)+4 种基金the China Postdoctoral Science Foundation(2018M630728)the Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring&Sustainable Management and Utilization(ZD202102)the Program for Innovative Research Team in Science and Technology in Fujian Province University(KC190002)the Open Fund of University Key Lab of Geomatics Technology and Optimize Resources Utilization in Fujian Province(fafugeo201901)supported by the Research Project of Jinjiang Fuda Science and Education Park Development Center(2019-JJFDKY-17)。
文摘Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.
基金Supported by the Education Department Project of Fujian Province(JB11039)
文摘[ Objectives ] This study was conducted to investigate the genetic diversity of 20 lotus (Nelumbo nucifera Gaertn) samples. [ Methods ] On this optimal ISSR amplification system, 16 primers were screened with good polymorphism, and the DNA was used to amplify the 20 plant samples. [ R^ults] The 16 primers produced 225 loci, of which 170 were polymorphic, and the polymorphic loci percentage was up to 75.56%. The genetic similarity coefficients between the 20 vari- eties ranged from 0. 577 8 to 0.951 1, which were calculated by POPGENE32. The 20 varieties by UPMGA analysis could be clustered into 2 groups, the first of which included Baiyangdian red lotus and Donggua lotus, and other varieties was included in the second group. [ Conchmions] ISSR molecular markers could be effectively used in genetic diversity and fingerprint analysis for different lotus varieties.
基金supported by the National Key Research and Development Program of China(2018YFD0600104)the National Natural Science Foundation of China Grant(31971734)+3 种基金the Natural Science Foundation of Fujian Province(Grant No.2021J02027)the Distinguished Young Scholar Program of Fujian Agriculture and Forestry University(Grant No.xjq202017)the Technological Innovation Team at the University of Fujian provincethe Forestry Peak Discipline Construction Project from Fujian Agriculture and Forestry University。
文摘Dendrocalamus latiflorus Munro is a woody clumping bamboo with rapid shoot growth.Both genetic transformation and clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)gene editing techniques are available for D.latiflorus,enabling reverse genetic approaches.Thus,D.latiflorus has the potential to be a model bamboo species.However,the genome sequence of D.latiflorus has remained unreported due to its polyploidy and large genome size.Here,we sequenced the D.latiflorus genome and assembled it into three allele-aware subgenomes(AABBCC),representingthe largest genome of a major bamboo species.We assembled 70 allelic chromosomes(2,737 Mb)for hexaploid D.latiflorus using both singlemolecule sequencing from the Pacific Biosciences(Pac Bio)Sequel platform and chromosome conformation capture sequencing(Hi-C).Repetitive sequences comprised 52.65%of the D.latiflorus genome.We annotated 135231 protein-coding genes in the genome based on transcriptomes from eight different tissues.Transcriptome sequencing using RNA-Seq and Pac Bio singlemolecule real-time long-read isoform sequencing revealed highly differential alternative splicing(AS)between non-abortive and abortive shoots,suggesting that AS regulates the abortion rate of bamboo shoots.This high-quality hexaploid genome and comprehensive strand-specific transcriptome datasets for this Poaceae family member will pave the way for bamboo research using D.latiflorus as a model species.
基金supported by Luoyang Major Science and Technology Project(1901029A)partially supported by Jiangsu Agricultural Science and Technology Independent Innovation Fund Project[CX(21)2035]Jiangsu Provincial Key R&D plan(BE2020398).
文摘Dear Editor,African swine fever virus(ASFV),the sole member of the family Asfarviridae,is the causative agent of African swine fever(ASF),a viral disease that leads to high mortality in domestic pigs.Since firstly identified in Kenya in the 1920s,ASFV has been prevalent in Africa,Europe,and Russian Federation(Sanchez et al.,2019).Recently,ASFV was introduced to Asian countries including China,Mongolia,Vietnam,Cambodia,Laos and South Korea,which lead to huge economic losses to local pig industries(Li and Tian,2018;Gaudreault and Richt,2019).The first case of ASFV in China was reported in August 2018(Zhou et al.,2018).