期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient CO_(2)Reduction to Formate on CsPbI_(3) Nanocrystals Wrapped with Reduced Graphene Oxide 被引量:1
1
作者 Minh Tam Hoang Chen Han +13 位作者 Zhipeng Ma Xin Mao Yang Yang Sepideh Sadat Madani Paul Shaw Yongchao Yang lingyi peng Cui Ying Toe Jian Pan Rose Amal Aijun Du Tuquabo Tesfamichael Zhaojun Han Hongxia Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期1-14,共14页
Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their po... Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their potential in promoting CO_(2)reduction reaction(CO_(2)RR),however,their low phase stability has limited their application perspective.Herein,we present a reduced graphene oxide(rGO)wrapped CsPbI_3 perovskite nanocrystal(NC)CO_(2)RR catalyst(CsPbI_3/rGO),demonstrating enhanced stability in the aqueous electrolyte.The CsPbI_3/rGO catalyst exhibited>92%Faradaic efficiency toward formate production at a CO_(2)RR current density of~12.7 mA cm^(-2).Comprehensive characterizations revealed the superior performance of the CsPbI_3/rGO catalyst originated from the synergistic effects between the CsPbI_3 NCs and rGO,i.e.,rGO stabilized theα-CsPbI_3 phase and tuned the charge distribution,thus lowered the energy barrier for the protonation process and the formation of~*HCOO intermediate,which resulted in high CO_(2)RR selectivity toward formate.This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO_(2)RR toward valuable fuels. 展开更多
关键词 Perovskite nanocrystal ELECTROCATALYST Inorganic perovskite CO_(2)reduction Formate production
下载PDF
Platinum monolayers stabilized on dealloyed AuCu core-shell nanoparticles for improved activity and stability on methanol oxidation reaction 被引量:1
2
作者 Weihua Guo Xiaozhang Yao +3 位作者 lingyi peng Bingqing Lin Yongqiang Kang Lin Gan 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第3期836-840,共5页
Deposition of platinum(Pt)monolayers(PtML)on Au substrate represents a robust strategy to maximally utilize the Pt atoms and meanwhile achieve high catalytic activity towards methanol oxidation reaction for direct met... Deposition of platinum(Pt)monolayers(PtML)on Au substrate represents a robust strategy to maximally utilize the Pt atoms and meanwhile achieve high catalytic activity towards methanol oxidation reaction for direct methanol fuel cells owing to a substrate-induced tensile strain effect.However,recent studies showed that Pt(ML)on Au substrate are far from perfect smooth monoatomic layer,but actually exhibited three-dimensional nanoclusters.Moreover,the Pt(ML)suffered from severe structural instability and thus activity degradation during long-term electrocatalysis.To regulate the growth of Pt(ML)Au surface and also to improve its structural stability,we exploit dealloyed AuCu core-shell nanoparticles as a new substrate for depositing Pt(ML).By using high-resolution scanning transmission electron microscopy and energy dispersive X-ray elemental mapping combined with electrochemical characte rizations,we reveal that the dealloyed AuCu core-shell nanoparticles can effectively promote the deposition of Pt(ML)closer to a smooth monolayer structure,thus leading to a higher utilization efficiency of Pt and higher intrinsic activity towards methanol oxidation compared to those on pure Au nanoparticles.Moreover,the Pt(ML)deposited on the AuCu core-shell NPs showed substa ntially enhanced stability compared to those on pure Au NPs during long-term electrocatalysis over several hours,during which segregation of Cu to the Au/Pt interface was revealed and suggested to play an important role in stabilizing the Pt(ML)catalysts. 展开更多
关键词 PLATINUM monolayers METHANOL oxidation reaction CORE-SHELL nanoparticles DEALLOYING STABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部