A single-phase (Ni,Pt)Al coating with lean addition of Zr was prepared by co-electroplating of Pt-Zr com posite plating and subsequent gaseous alum inization treatm ents. Isotherm al and cyclic oxidation behavior of t...A single-phase (Ni,Pt)Al coating with lean addition of Zr was prepared by co-electroplating of Pt-Zr com posite plating and subsequent gaseous alum inization treatm ents. Isotherm al and cyclic oxidation behavior of the Zr-doped (Ni,Pt)Al coating sam ples was assessed at 1373K in static air in comparison with plain nickel alum inide (NiAl) and norm al (Ni,Pt)Al coatings. Results indicated th at Zr-doped (Ni,Pt)Al coating dem onstrated a lower oxidation rate constant and reduced tendency of oxide scale spallation as well as surface rumpling, in which the enhanced oxidation perform ance was m ainly attributed to the segregation of Zr at oxide scale grain boundaries and the im proved Young's modulus of the coating. Besides, the addition of Zr effectively delayed oxide phase transform ation of Al2O3 from θ phase to α phase in the early oxidation stage and coating degradation of β-NiAl to γ'-Ni3Al in the stable oxidation stage.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51,671,202 and 51,301,184)the Defence Industrial Technology Development Program (Grant No. JCKY2016404C001)sponsored by “Liaoning BaiQianWan Talents” Program
文摘A single-phase (Ni,Pt)Al coating with lean addition of Zr was prepared by co-electroplating of Pt-Zr com posite plating and subsequent gaseous alum inization treatm ents. Isotherm al and cyclic oxidation behavior of the Zr-doped (Ni,Pt)Al coating sam ples was assessed at 1373K in static air in comparison with plain nickel alum inide (NiAl) and norm al (Ni,Pt)Al coatings. Results indicated th at Zr-doped (Ni,Pt)Al coating dem onstrated a lower oxidation rate constant and reduced tendency of oxide scale spallation as well as surface rumpling, in which the enhanced oxidation perform ance was m ainly attributed to the segregation of Zr at oxide scale grain boundaries and the im proved Young's modulus of the coating. Besides, the addition of Zr effectively delayed oxide phase transform ation of Al2O3 from θ phase to α phase in the early oxidation stage and coating degradation of β-NiAl to γ'-Ni3Al in the stable oxidation stage.