Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that ...Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.展开更多
The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in pe...The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41475039)the National Key Basic Research and Development Project of China (Grant No. 2015CB953601)
文摘Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.
基金supported by the Shenzhen Peacock Plan Program(KQTD2016053015544057)the Nanshan Pilot Plan(LHTD20170001)the National Natural Science Foundation of China(51773230)
文摘The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.