期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性 被引量:14
1
作者 丁庆倩 王小婷 +10 位作者 胡利琴 齐欣 葛林豪 徐伟亚 徐兆师 周永斌 贾冠清 刁现民 闵东红 马有志 陈明 《遗传》 CAS CSCD 北大核心 2018年第4期327-338,共12页
Myeloblastosis(MYB)类转录因子是高等植物中最大的转录因子家族之一,在植物发育及防御反应过程中发挥重要作用,还参与植物对干旱等非生物胁迫的响应。谷子(Setaria italica L.)起源于中国,具有抗旱、耐瘠薄的特性,是研究单子叶作物非... Myeloblastosis(MYB)类转录因子是高等植物中最大的转录因子家族之一,在植物发育及防御反应过程中发挥重要作用,还参与植物对干旱等非生物胁迫的响应。谷子(Setaria italica L.)起源于中国,具有抗旱、耐瘠薄的特性,是研究单子叶作物非生物胁迫抗性的理想材料。本研究对耐低氮胁迫谷子品种郑204经低氮处理后进行转录组分析,鉴定出一个在低氮胁迫条件下明显上调的MYB类转录因子SiMYB42。系统发育树结果表明,SiMYB42属于R2R3-MYB亚族,具有2个MYB保守域;表达模式分析显示,SiMYB42在低氮、高盐、干旱和ABA胁迫条件下表达量显著上调;亚细胞定位、quantitative real-time PCR及转录激活活性分析结果表明,SiMYB42蛋白定位于植物的细胞核和细胞膜中,主要在谷子的叶部或根部表达,具有转录激活活性;基因功能分析结果表明,在正常条件下,转SiMYB42基因拟南芥与野生型Columbia-0拟南芥(WT)无明显差异,但在低氮条件下,转SiMYB42基因拟南芥的主根长、根系表面积及鲜重均显著高于WT,结果证明SiMYB42基因可以提高转基因植物对低氮胁迫的耐性;下游基因表达分析结果显示,在转SiMYB42基因拟南芥中,参与植物氮素转运的硝酸盐转运基因NRT2.1、NRT2.4和NRT2.5的表达水平均高于WT,启动子分析结果显示NRT2.1、NRT2.4和NRT2.5基因启动子序列中均具有MYB结合位点。以上结果证明,SiMYB42可以通过调控下游硝酸盐转运体基因的表达提高植物在低氮条件下的耐性。本研究揭示了SiMYB42基因在低氮胁迫反应途径中的作用,为进一步了解谷子低氮胁迫响应的调控网络奠定了基础。 展开更多
关键词 谷子(Setaria ITALICA L.) MYB类转录因子 低氮胁迫 基因表达分析 基因功能分析
下载PDF
Geminiviral C2 proteins inhibit active autophagy to facilitate virus infection by impairing the interaction of ATG7 and ATG8 被引量:2
2
作者 Buwei Cao linhao ge +2 位作者 Mingzhen Zhang Fangfang Li Xueping Zhou 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第5期1328-1343,共16页
Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections.Here we report that geminiviruses counteract activated autophagymediated antiviral defense in ... Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections.Here we report that geminiviruses counteract activated autophagymediated antiviral defense in plant cells through the C2 proteins they encode.We found that,in Nicotiana benthamiana plants,tomato leaf curl Yunnan virus(TLCYnV)infection upregulated the transcription levels of autophagy-related genes(ATGs).Overexpression of NbATG5,NbATG7,or NbATG8a in N.benthamiana plants decreased TLCYnV accumulation and attenuated viral symptoms.Interestingly,transgenic overexpression of NbATG7 promoted the growth of N.benthamiana plants and enhanced plant resistance to TLCYnV.We further revealed that the C2 protein encoded by TLCYnV directly interacted with the ubiquitinactivating domain of ATG7.This interaction competitively disrupted the ATG7–ATG8 binding in N.benthamiana and Solanum lycopersicum plants,thereby inhibiting autophagy activity.Furthermore,we uncovered that the C2-mediated autophagy inhibition mechanism was conserved in three other geminiviruses.In summary,we discovered a novel counter-defensive strategy employed by geminiviruses that enlists their C2 proteins as disrupters of ATG7–ATG8 interactions to defeat antiviral autophagy. 展开更多
关键词 AUTOPHAGY C2 counterdefense GEMINIVIRUS plant defense the ATG7–ATG8 interaction
原文传递
m^(6)A modification of plant virus enables host recognition by NMD factors in plants 被引量:1
3
作者 Hao He linhao ge +4 位作者 Yalin Chen Siwen Zhao Zhaolei Li Xueping Zhou Fangfang Li 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第1期161-174,共14页
N^(6)-methyladenosine(m^(6)A)is the most abundant eukaryotic mRNA modification and is involved in various biological processes.Increasing evidence has implicated that m^(6)Amodification is an important anti-viral defe... N^(6)-methyladenosine(m^(6)A)is the most abundant eukaryotic mRNA modification and is involved in various biological processes.Increasing evidence has implicated that m^(6)Amodification is an important anti-viral defense mechanism in mammals and plants,but it is largely unknown how m^(6)Aregulates viral infection in plants.Here we report the dynamic changes and functional anatomy of m^(6)Ain Nicotiana benthamiana and Solanum lycopersicum during Pepino mosaic virus(PepMV)infection.m^(6)Amodification in the PepMV RNA genome is conserved in these two species.Overexpression of the m^(6)Awriters,mRNA adenosine methylase A(MTA),and HAKAI inhibit the PepMV RNA accumulation accompanied by increased viral m^(6)Amodifications,whereas deficiency of these writers decreases the viral RNA m^(6)Alevels but enhances virus infection.Further study reveals that the cytoplasmic YTH-domain family protein NbECT2A/2B/2C as m^(6)Areaders are involved in anti-viral immunity.Protein-protein interactions indicate that NbECT2A/2B/2C interact with nonsense-mediated mRNA decay(NMD)-related proteins,including NbUPF3 and NbSMG7,but not with NbUPF1.m^(6)Amodification-mediated restriction to PepMV infection is dependent on NMD-related factors.These findings provide new insights into the functionality of m^(6)Aanti-viral activity and reveal a distinct immune response that NMD factors recognize the m^(6)Areaders-viral m^(6)ARNA complex for viral RNA degradation to limit virus infection in plants. 展开更多
关键词 m^(6)A Pepino mosaic virus plant defense m^(6)A readers NMD factors
原文传递
SUMOylation-modified Pelota-Hbs1 RNA surveillance complex restricts the infection of potyvirids in plants 被引量:3
4
作者 linhao ge Buwei Cao +9 位作者 Rui Qiao Hongguang Cui Shaofang Li Hongying Shan Pan Gong Mingzhen Zhang Hao Li Aiming Wang Xueping Zhou Fangfang Li 《Molecular Plant》 SCIE CSCD 2023年第3期632-642,共11页
RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable ... RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable of restricting viruses in plants.Here,we show that the evolutionarily conserved Pelota–Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae(termed potyvirids),the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide.Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron,which is conserved in almost all potyvirids.This allows Pelota to target the virus and act as a viral restriction factor.Furthermore,Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta.Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation.These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants. 展开更多
关键词 SUMOYLATION Pelota-Hbs1 G1-2A6-7 motif POTYVIRUSES
原文传递
Pepino mosaic virus antagonizes plant m^(6)A modification by promoting the autophagic degradation of the m^(6)A writer HAKAI 被引量:4
5
作者 Hao He linhao ge +2 位作者 Zhaolei Li Xueping Zhou Fangfang Li 《aBIOTECH》 CSCD 2023年第2期83-96,共14页
Autophagy plays an active anti-viral role in plants.Increasing evidence suggests that viruses can inhibit or manipulate autophagy,thereby winning the arms race between plants and viruses.Here,we demonstrate that overe... Autophagy plays an active anti-viral role in plants.Increasing evidence suggests that viruses can inhibit or manipulate autophagy,thereby winning the arms race between plants and viruses.Here,we demonstrate that overexpression of an m^(6)A writer from Solanum lycopersicum,SlHAKAI,could negatively regulate pepino mosaic virus(PepMV)infection,inhibit viral RNA and protein accumulations by affecting viral m^(6)A levels in tomato plants and vice versa.The PepMV-encoded RNA-dependent RNA polymerase(RdRP)directly interacts with SlHAKAI and reduces its protein accumulation.The RdRP-mediated decreased protein accumulation of SlHAKAI is sensitive to the autophagy inhibitor 3-methyladenine and is compromised by knocking down a core autophagy gene.Furthermore,PepMV RdRP could interact with an essential autophagy-related protein,SlBeclin1.RdRP,SlHAKAI,and SlBeclin1 interaction complexes form bright granules in the cytoplasm.Silencing of Beclin1 in Nicotiana benthamiana plants abolishes the RdRP-mediated degradation of SlHAKAI,indicating the requirement of Beclin1 in this process.This study uncovers that the PepMV RdRP exploits the autophagy pathway by interacting with SlBeclin1 to promote the autophagic degradation of the SlHAKAI protein,thereby inhibiting the m^(6)A modification-mediated plant defense responses. 展开更多
关键词 Pepino mosaic virus HAKAI AUTOPHAGY BECLIN1
原文传递
Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand 被引量:2
6
作者 Pan Gong Qingtang Shen +12 位作者 Mingzhen Zhang Rui Qiao Jing Jiang Lili Su Siwen Zhao Shuai Fu Yu Ma linhao ge Yaqin Wang Rosa Lozano-Durán Aiming Wang Fangfang Li Xueping Zhou 《Molecular Plant》 SCIE CSCD 2023年第11期1794-1810,共17页
Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replic... Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replication.Based on current evidence,viral proteins are translated via viral+RNAs,whereas-RNA is considered to be a viral replication intermediate without coding capacity.Here,we report that plant and animal+ssRNA viruses contain small open reading frames(ORFs)in their-RNA(reverse ORFs[rORFs]).Using turnip mosaic virus(TuMV)as a model for plant+ssRNA viruses,we demonstrate that small proteins encoded by rORFs display specific subcellularlocalizations,and confirm the presence of rORF2 in infected cells through mass spectrometry analysis.The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes.The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase,and mutation of rORF2 completely abolishes virus infection,whereas ectopic expression of rORF2 rescues the mutant virus.Furthermore,we show that several rORFs in the-RNA of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)have the ability to suppress type l interferon production and facilitate the infection of ve-sicular stomatitis virus.In addition,we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs.Taken together,these findings indicate that the-RNA of+ssRNA vi-ruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection,revealing a viral proteome larger than previously thought. 展开更多
关键词 positive-sense single-stranded RNA viruses small proteins negative-sense RNA turnip mosaic virus severe acute respiratory syndrome coronavirus 2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部