Second-order(χ^((2))) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices.Due to strong photon confnement and long photon lifetime,integrated mic...Second-order(χ^((2))) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices.Due to strong photon confnement and long photon lifetime,integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical efects.However,existing silicon-based materials lack a χ^((2)) response due to their centrosymmetric structures.A variety of novel material platforms possessing χ^((2)) nonlinearity have been developed over the past two decades.This review comprehensively summarizes the progress of second-order nonlinear optical efects in integrated microresonators.First,the basic principles of χ^((2)) nonlinear efects are introduced.Afterward,we highlight the commonly used χ^((2)) nonlinear optical materials,including their material properties and respective functional devices.We also discuss the prospects and challenges of utilizing χ^((2)) nonlinearity in the feld of integrated microcavity photonics.展开更多
Microlaser with multiple lasing bands is critical in various applications,such as full-color display,optical communications,and computing.Here,we propose a simple and efficient method for homogeneously doping rare ear...Microlaser with multiple lasing bands is critical in various applications,such as full-color display,optical communications,and computing.Here,we propose a simple and efficient method for homogeneously doping rare earth elements into a silica whispering-gallery microcavity.By this method,an Er-Yb co-doped silica microsphere cavity with the highest quality(Q)factor(exceeding 108)among the rare-earth-doped microcavities is fabricated to demonstrate simultaneous and stable lasing covering ultraviolet,visible,and near-infrared bands under room temperature and a continuous-wave pump.The thresholds of all the lasing bands are estimated to be at the submilliwatt level,where both the ultraviolet and violet continuous wave upconversion lasing from rare earth elements has not been separately demonstrated under room temperature until this work.This ultrahigh-Q doped microcavity is an excellent platform for highperformance multiband microlasers,ultrahigh-precision sensors,optical memories,and cavity-enhanced light–matter interaction studies.展开更多
基金the National Key Research and Development Program of China(No.2021YFB2800604)the National Natural Science Foundation of China(Grant Nos.91850115 and 11774110)the State Key Laboratory of Applied Optics(No.SKLAO2021001A10).
文摘Second-order(χ^((2))) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices.Due to strong photon confnement and long photon lifetime,integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical efects.However,existing silicon-based materials lack a χ^((2)) response due to their centrosymmetric structures.A variety of novel material platforms possessing χ^((2)) nonlinearity have been developed over the past two decades.This review comprehensively summarizes the progress of second-order nonlinear optical efects in integrated microresonators.First,the basic principles of χ^((2)) nonlinear efects are introduced.Afterward,we highlight the commonly used χ^((2)) nonlinear optical materials,including their material properties and respective functional devices.We also discuss the prospects and challenges of utilizing χ^((2)) nonlinearity in the feld of integrated microcavity photonics.
基金supported by the National Natural Science Foundation of China(91850115,11774110)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XKJC036,2019kfy RCPY092)+1 种基金the State Key Laboratory of Advanced Optical Communication Systems and Networks(2021GZKF003)the State Key Laboratory of Applied Optics(SKLAO2021001A10)。
文摘Microlaser with multiple lasing bands is critical in various applications,such as full-color display,optical communications,and computing.Here,we propose a simple and efficient method for homogeneously doping rare earth elements into a silica whispering-gallery microcavity.By this method,an Er-Yb co-doped silica microsphere cavity with the highest quality(Q)factor(exceeding 108)among the rare-earth-doped microcavities is fabricated to demonstrate simultaneous and stable lasing covering ultraviolet,visible,and near-infrared bands under room temperature and a continuous-wave pump.The thresholds of all the lasing bands are estimated to be at the submilliwatt level,where both the ultraviolet and violet continuous wave upconversion lasing from rare earth elements has not been separately demonstrated under room temperature until this work.This ultrahigh-Q doped microcavity is an excellent platform for highperformance multiband microlasers,ultrahigh-precision sensors,optical memories,and cavity-enhanced light–matter interaction studies.