Retinoic acid(RA)and 2-phospho-L-ascorbic acid trisodium salt(AscPNa)promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.In the current studies,the lower abilities of RA and AscP...Retinoic acid(RA)and 2-phospho-L-ascorbic acid trisodium salt(AscPNa)promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.In the current studies,the lower abilities of RA and AscPNa to promote reprogramming in the presence of each other suggested that they may share downstream pathways at least partially.The hypothesis was further supported by the RNA-seq analysis which demonstrated a high-level overlap between RA-activated and AscPNa activated genes during reprogramming.In addition,RA upregulated Glut1/3,facilitated the membrane transportation of dehydroascorbic acid,the oxidized form of L-ascorbic acid,and subsequently maintained intracellular L-ascorbic acid at higher level and for longer time.On the other hand,AscPNa facilitated the mesenchymal-epithelial transition during reprogramming,downregulated key mesenchymal transcriptional factors like Zeb1 and Twist1,subsequently suppressed the expression of Cyp26a1/b1 which mediates the metabolism of RA,and sustained the intracellular level of RA.Furthermore,the different abilities of RA and AscPNa to induce mesenchymal-epithelial transition,pluripotency,and neuronal differentiation explain their complex contribution to reprogramming when used individually or in combination.Therefore,the current studies identified a positive feedback between RA and AscPNa,or possibility between vitamin A and C,and further explored their contributions to reprogramming.展开更多
Background:Currently,direct conversion from somatic cells to neurons requires virus-mediated delivery of at least one transcriptional factor or a combination of several small-molecule compounds.Delivery of transcripti...Background:Currently,direct conversion from somatic cells to neurons requires virus-mediated delivery of at least one transcriptional factor or a combination of several small-molecule compounds.Delivery of transcriptional factors may affect genome stability,while small-molecule compounds may require more evaluations when applied in vivo.Thus,a defined medium with only conventional growth factors or additives for cell culture is desirable for inducing neuronal trans-differentiation.Results:Here,we report that a defined medium(5C)consisting of basic fibroblast growth factor(bFGF),N2 supplement,leukemia inhibitory factor,vitamin C(Vc),andβ-mercaptoethanol(βMe)induces the direct conversion of somatic cells to cells with neuronal characteristics.Application of 5C medium converted mouse embryonic fibroblasts(MEFs)into TuJ+neuronal-like cells,which were capable of survival after being transplanted into the mouse brain.The same 5C medium could convert primary rat astrocytes into neuronal-like cells with mature electrophysiology characteristics in vitro and facilitated the recovery of brain injury,possibly by inducing similar conversions,when infused into the mouse brain in vivo.Crucially,5C medium could also induce neuronal characteristics in several human cell types.Conclusions:In summary,this 5C medium not only provides a means to derive cells with neuronal characteristics without viral transfection in vitro but might also be useful to produce neurons in vivo for neurodegenerative disease treatment.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.31671475,U1601228,31900699,and 81702445)the Strategic Priority Research Program of Chinese Academy of Sciences,No.XDA16010305+3 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences,No.QYZDB-SSW-SMC031the International Partnership Program of Chinese Academy of Sciences,No.154144KYSB20190034the Key Research&Development Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(Grant No.2018GZR110104008)the Science and Technology Planning Project of Guangdong Province(Grant No.2017B030314056)。
文摘Retinoic acid(RA)and 2-phospho-L-ascorbic acid trisodium salt(AscPNa)promote the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.In the current studies,the lower abilities of RA and AscPNa to promote reprogramming in the presence of each other suggested that they may share downstream pathways at least partially.The hypothesis was further supported by the RNA-seq analysis which demonstrated a high-level overlap between RA-activated and AscPNa activated genes during reprogramming.In addition,RA upregulated Glut1/3,facilitated the membrane transportation of dehydroascorbic acid,the oxidized form of L-ascorbic acid,and subsequently maintained intracellular L-ascorbic acid at higher level and for longer time.On the other hand,AscPNa facilitated the mesenchymal-epithelial transition during reprogramming,downregulated key mesenchymal transcriptional factors like Zeb1 and Twist1,subsequently suppressed the expression of Cyp26a1/b1 which mediates the metabolism of RA,and sustained the intracellular level of RA.Furthermore,the different abilities of RA and AscPNa to induce mesenchymal-epithelial transition,pluripotency,and neuronal differentiation explain their complex contribution to reprogramming when used individually or in combination.Therefore,the current studies identified a positive feedback between RA and AscPNa,or possibility between vitamin A and C,and further explored their contributions to reprogramming.
基金This work was supported by“Strategic Priority Research Program of the Chinese Academy of Sciences(XDA01020302)”the“National Natural Science Foundation of China(31422032,31421004)”+4 种基金the“Guangdong Natural Science Foundation(2014A030308002)”the“Guangdong Science and Technology Planning Project(2013B010404040),”the“Guangzhou Health Care Collaborative Innovation Program(201508020250)”We sincerely thank Dr.Chen Ling(mouse macrophages)Dr.Wang Lihui(HFFs)in GIBH,and Dr.Peng Xiang(BM-hMSCs)in Sun Yat-Sen University for providing cells。
文摘Background:Currently,direct conversion from somatic cells to neurons requires virus-mediated delivery of at least one transcriptional factor or a combination of several small-molecule compounds.Delivery of transcriptional factors may affect genome stability,while small-molecule compounds may require more evaluations when applied in vivo.Thus,a defined medium with only conventional growth factors or additives for cell culture is desirable for inducing neuronal trans-differentiation.Results:Here,we report that a defined medium(5C)consisting of basic fibroblast growth factor(bFGF),N2 supplement,leukemia inhibitory factor,vitamin C(Vc),andβ-mercaptoethanol(βMe)induces the direct conversion of somatic cells to cells with neuronal characteristics.Application of 5C medium converted mouse embryonic fibroblasts(MEFs)into TuJ+neuronal-like cells,which were capable of survival after being transplanted into the mouse brain.The same 5C medium could convert primary rat astrocytes into neuronal-like cells with mature electrophysiology characteristics in vitro and facilitated the recovery of brain injury,possibly by inducing similar conversions,when infused into the mouse brain in vivo.Crucially,5C medium could also induce neuronal characteristics in several human cell types.Conclusions:In summary,this 5C medium not only provides a means to derive cells with neuronal characteristics without viral transfection in vitro but might also be useful to produce neurons in vivo for neurodegenerative disease treatment.