期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mineralization of phenol by ozone combined with activated carbon:Performance and mechanism under different pH levels 被引量:4
1
作者 Wei Xiong Weihua Cui +7 位作者 Rui Li Chuanping Feng Yang Liu Ningping Ma Jian Deng linlin xing Yu Gao Nan Chen 《Environmental Science and Ecotechnology》 2020年第1期28-36,共9页
The degradation of phenol using ozone with activated carbon(O_(3)/AC system)was investigated in this study.The O_(3)/AC system was also compared with the single O_(3) and AC systems.The total organic carbon(TOC)remova... The degradation of phenol using ozone with activated carbon(O_(3)/AC system)was investigated in this study.The O_(3)/AC system was also compared with the single O_(3) and AC systems.The total organic carbon(TOC)removal efficiency in the O_(3)/AC system was roughly 26%and 30%higher than the single AC and O_(3) systems,respectively.It was demonstrated that the phenol degradation rate and TOC removal efficiency were significantly affected by the ozone concentration,AC dosage,and solution pH.The pseudo-first-order and pseudo-second-order kinetic models were fitted to identify the mechanisms of the phenol removal process.The results of Scanning Electron Microscopy,Brunauer-Emmett-Teller,and Fourier-transform infrared spectroscopy of raw and used AC indicated that the surface morphology,microstructure,and functional group properties had been changed during the reaction process.The possible O_(3)/AC system mineralization mechanism for phenol removal was tentatively proposed using scavenging active species such as·OH,O_(2)^(·-),and H_(2)O_(2).The transformation byproducts generated during the application of the O_(3)/AC system were identified by High Performance Liquid Chromatography and Gas Chromatography-Mass Spectrometry analyses.Therefore,the mineralization pathway of phenol in detail was proposed in acidic(pH 3.0)and alkaline(pH 11.0)conditions.This study provided a more systematic explanation of the mineralization mechanism for phenol in the O_(3)/AC system. 展开更多
关键词 Activated carbon OZONE Mineralization pathway Free radicals pH
原文传递
Activated carbon enhanced ozonation of oxalate attributed to HO·oxidation in bulk solution and surface oxidation: Effect of activated carbon dosage and pH 被引量:5
2
作者 linlin xing Yongbing Xie +4 位作者 Daisuke Minakata Hongbin Cao Jiadong Xiao Yi Zhang John C. Crittenden 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第10期2095-2105,共11页
Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and ox... Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon(AC)in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals(HOU) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol(tBA) with low dosages of AC,while it was hardly affected by tBA when the AC dosage was greater than 0.3 g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05 g/L, but it did not work when the AC dosage was no less than 0.1 g/L. These observations indicate that HOUin bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HOU oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5 g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HOUoxidation in basic bulk solution. A mechanism involving both HOUoxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate. 展开更多
关键词 Activated carbon Oxalate Ozonation Hydroxyl radicals Surface oxidation Catalytic ozonation
原文传递
Identification and prioritization of differentially expressed genes for time-series gene expression data
3
作者 linlin xing Maozu GUO +1 位作者 Xiaoyan LIU Chunyu WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第4期813-823,共11页
Identification of differentially expressed genes (DEGs) in time course studies is very useful for understanding gene function, and can help determine key genes during specific stages of plant development. A few exis... Identification of differentially expressed genes (DEGs) in time course studies is very useful for understanding gene function, and can help determine key genes during specific stages of plant development. A few existing methods focus on the detection of DEGs within a single biological group, enabling to study temporal changes in gene expression. To utilize a rapidly increasing amount of single-group time-series expression data, we propose a two-step method that integrates the temporal characteristics of time-series data to obtain a B-spline curve fit. Firstly, a fiat gene filter based on the Ljung-Box test is used to filter out flat genes. Then, a B-spline model is used to identify DEGs. For use in biological experiments, these DEGs should be screened, to determine their biological importance. To identify high-confidence promising DEGs for specific biological processes, we propose a novel gene prioritization approach based on the partner evaluation principle. This novel gene prioritization ap- proach utilizes existing co-expression information to rank DEGs that are likely to be involved in a specific biological process/condition. The proposed method is validated on the Arabidopsis thaliana seed germination dataset and on the rice anther development expression dataset. 展开更多
关键词 time-series gene expression flat gene filter gene prioritization CO-EXPRESSION differentially expressed genes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部