期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microencapsulated Lactobacillus plantarum promotes intestinal development through gut colonization of layer chicks
1
作者 Yaoming Cui Yanxia Liu +9 位作者 Jing Yang Haitao Duan Peng Wang linna guo Yanjiao guo Suying Li Yating Zhao Jinrong Wang Guanghai Qi Junjun Guan 《Animal Nutrition》 SCIE CAS CSCD 2024年第3期1-16,共16页
The effects of Lactobacillus plantarum in microencapsulation(LPM)on intestinal development in layer chicks were investigated in this study,as well as the colonization of L.plantarum in the gut.A total of 480 healthy H... The effects of Lactobacillus plantarum in microencapsulation(LPM)on intestinal development in layer chicks were investigated in this study,as well as the colonization of L.plantarum in the gut.A total of 480 healthy Hy-Line Brown layer chicks at 0 d old were randomly divided into 4 groups(8 replicates each treatment),and the diets of these birds were supplemented with nothing(control),L.plantarum(0.02 g/kg feed;109 CFU/kg feed),LPM(1.0 g/kg feed;109 CFU/kg feed)and wall material of LPM(WM;0.98 g/kg feed),respectively.Compared to control,LPM improved growth performance and intestinal development of layer chicks,evidenced by significantly increased body weight,average daily gain,average daily feed intake,villus height,villus height/crypt depth,as well as weight and length of the duodenum,jejunum and ileum(P<0.05).These results could be attributed to the increased colonization of L.plantarum in the gut,which was verified by significant increases in lactic acid content,viable counts in chyme and mucosa(P<0.05),as well as a visible rise in number of strains labeled with fluorescein isothiocyanate.Meanwhile,the relative abundances of Lactobacillus and Bifidobacterium significantly increased in response to microencapsulated L.plantarum supplementation(P<0.05),accompanied by the significant up-regulation of colonization related genes(P<0.05),encoding solute carrier family,monocarboxylate transporter,activin A receptor,succinate receptor and secretogranin II.To sum up,microencapsulated L.plantarum supplementation promoted intestinal development,which could be attributed to the enhancement of L.plantarum colonization in the intestine through the mutual assistance of Bifidobacterium and interactions with colonization related transmembrane proteins. 展开更多
关键词 Intestinal development COLONIZATION MICROBIOTA Layer chick Lactobacillus plantarum
原文传递
Light-triggered NO-releasing nanoparticles for treating mice with liver fibrosis 被引量:1
2
作者 Hongxia Liang Zhenhua Li +9 位作者 Zhigang Ren Qiaodi Jia linna guo Shasha Li Hongyu Zhang Shiqi Hu Dashuai Zhu Deliang Shen Zujiang Yu Ke Cheng 《Nano Research》 SCIE EI CAS CSCD 2020年第8期2197-2202,共6页
Liver fibrosis, resulting from chronic liver damage and characterized by the accumulation of extracellular matrix (ECM) proteins, is a characteristic of most types of chronic liver diseases. The activation of hepatic ... Liver fibrosis, resulting from chronic liver damage and characterized by the accumulation of extracellular matrix (ECM) proteins, is a characteristic of most types of chronic liver diseases. The activation of hepatic stellate cells (HSC) is considered an essential pathological hallmark in liver fibrosis. Although nitric oxide (NO) can effectively induce HSC apoptosis, the systemic administration of NO is ineffective and may cause severe complications such as hypotension. To overcome this limitation, nanoparticles were designed to target HSCs and release NO locally under the exposure of near infrared light (NIR). To achieve this, upconversion nanoparticle (UCNP) cores were enveloped in mesoporous silica shells (UCNP@mSiO2), which were modified with hyaluronic acid (HA-UCNP@mSiO2) and Roussin’s black salt (RBS). HA molecules recognize and bind to CD44 proteins, which are overexpressed on activated HSCs. Under exposure to a 980-nm NIR laser, the UCNP cores convert the 980-nm wavelength into ultraviolet (UV) light, which then energizes the RBS (NO donors), resulting in an efficient release of NO inside of the HSCs. Once released, NO triggers HSC apoptosis and reverses the liver fibrosis. This targeted and controlled release method provides the theoretical and experimental basis for novel therapeutic approaches to treat hepatic fibrosis. 展开更多
关键词 liver fibrosis nitric oxide(NO) hepatic stellate cells(HSC) NANOPARTICLES near infrared light(NIR)-controlled release
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部