We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations.An a posteriori rule is suggested to choose the stopping index of ...We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations.An a posteriori rule is suggested to choose the stopping index of iteration and the rates of convergence are also derived under the Lipschitz condition.Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method.展开更多
基金Supported in part by the Natural Science Foundation of China under grants 11761010 and 61863001.
文摘We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations.An a posteriori rule is suggested to choose the stopping index of iteration and the rates of convergence are also derived under the Lipschitz condition.Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method.