Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in r...Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.展开更多
文摘Driven by the goal of“carbon neutrality,”the increase in use of renewable energy power systems will be inevitable in the future.Uncontrolled output power and random volatility make it difficult to balance power in real time during system operation.Therefore,energy storage is considered to be an effective way to ensure the real-time balance of system power.However,cost of energy storage is relatively expensive.As a solution,energy storage can be used to balance the system power in order to reduce system operating costs.Taking the high proportion of wind power systems as an example,the impact of the“supply side”low-carbon transformation on the economics and reliability of power system operation is explored.In order to solve the problem of power system operation configuration optimization under the background of“carbon neutrality,”this paper establishes a multi-objective programming model.