Radical-containing porous organic polymers(POPs)have drawn great interest in various applications.However,the synthesis of radical POPs remains challenging due to the unstable nature of organic radicals.Here,a persist...Radical-containing porous organic polymers(POPs)have drawn great interest in various applications.However,the synthesis of radical POPs remains challenging due to the unstable nature of organic radicals.Here,a persistent and stable three-dimensional silicon-diacetylene porous organic radical polymer was synthesized via a classic Eglinton homocoupling reaction of tetraethynylsilane.The presence of carbon radicals in this material was confirmed by electron paramagnetic resonance,and its paramagnetic behavior was analyzed by a superconducting quantum interference device.This unique material has a low-lying lowest unoccupied molecular orbital(LUMO)energy level(−5.47 eV)and a small energy gap(ca.1.46 eV),which shows long-term cycling stability and excellent rate capability as an anode material for lithium-ion batteries,demonstrating potential application in energy fields.展开更多
基金Financial support from the National Natural Science Foundation of China(grant nos.22131004,U21A20330,and 52173195)the“111”project(grant no.B18012)+1 种基金Jilin Provincial Department of Science and Technology(grant no.20210508048RQ)the Fundamental Research Funds for the Central Universities are gratefully acknowledged.
文摘Radical-containing porous organic polymers(POPs)have drawn great interest in various applications.However,the synthesis of radical POPs remains challenging due to the unstable nature of organic radicals.Here,a persistent and stable three-dimensional silicon-diacetylene porous organic radical polymer was synthesized via a classic Eglinton homocoupling reaction of tetraethynylsilane.The presence of carbon radicals in this material was confirmed by electron paramagnetic resonance,and its paramagnetic behavior was analyzed by a superconducting quantum interference device.This unique material has a low-lying lowest unoccupied molecular orbital(LUMO)energy level(−5.47 eV)and a small energy gap(ca.1.46 eV),which shows long-term cycling stability and excellent rate capability as an anode material for lithium-ion batteries,demonstrating potential application in energy fields.