The common carp (Cyprinus carpio) has a large variety of strains. The more popular are the koi (Japanese ornamental carp), which are still bred today to generate creative colors and patterns, giving rise to multiple p...The common carp (Cyprinus carpio) has a large variety of strains. The more popular are the koi (Japanese ornamental carp), which are still bred today to generate creative colors and patterns, giving rise to multiple phenotypes. Since koi are in great demand, there is a challenge to determine the genetics defining their quality. Two methods: 1) direct sequencing of five candidate gene regions, i.e., mitochondrial (cytochrome b, 12S gene and the D-loop) and nuclear (red sensitive opsin and Rag-1) loci, to detect single nucleotide polymorphisms (SNP)s and 2) random amplification of polymorphic DNA (RAPD), were used to differentiate among four koi strains (Kohaku, Sanke, Ghost and Ohgon) and the common carp. Novel SNPs, distinguishing between koi and the common carp, were revealed in cytochrome b, the D-loop and in the red sensitive opsin;one was a missense mutation in cytochrome b at position 15860, in which threonine in the common carp became alanine in all koi strains examined. The Kohaku strain was found to have two alleles in the mitochondrial fragments, forming two different haplotypes (subpo-pulations). These novel SNPs distinguished between koi strains and the common carp, and the RAPD method enabled further differentiation among the four koi strains.展开更多
文摘The common carp (Cyprinus carpio) has a large variety of strains. The more popular are the koi (Japanese ornamental carp), which are still bred today to generate creative colors and patterns, giving rise to multiple phenotypes. Since koi are in great demand, there is a challenge to determine the genetics defining their quality. Two methods: 1) direct sequencing of five candidate gene regions, i.e., mitochondrial (cytochrome b, 12S gene and the D-loop) and nuclear (red sensitive opsin and Rag-1) loci, to detect single nucleotide polymorphisms (SNP)s and 2) random amplification of polymorphic DNA (RAPD), were used to differentiate among four koi strains (Kohaku, Sanke, Ghost and Ohgon) and the common carp. Novel SNPs, distinguishing between koi and the common carp, were revealed in cytochrome b, the D-loop and in the red sensitive opsin;one was a missense mutation in cytochrome b at position 15860, in which threonine in the common carp became alanine in all koi strains examined. The Kohaku strain was found to have two alleles in the mitochondrial fragments, forming two different haplotypes (subpo-pulations). These novel SNPs distinguished between koi strains and the common carp, and the RAPD method enabled further differentiation among the four koi strains.