Signature,widely used in cloud environment,describes the work as readily identifying its creator.The existing signature schemes in the literature mostly rely on the Hardness assumption which can be easily solved by qu...Signature,widely used in cloud environment,describes the work as readily identifying its creator.The existing signature schemes in the literature mostly rely on the Hardness assumption which can be easily solved by quantum algorithm.In this paper,we proposed an advanced quantum-resistant signature scheme for Cloud based on Eisenstein Ring(ETRUS)which ensures our signature scheme proceed in a lattice with higher density.We proved that ETRUS highly improve the performance of traditional lattice signature schemes.Moreover,the Norm of polynomials decreases significantly in ETRUS which can effectively reduce the amount of polynomials convolution calculation.Furthermore,storage complexity of ETRUS is smaller than classical ones.Finally,according to all convolution of ETRUS enjoy lower degree polynomials,our scheme appropriately accelerate 56.37%speed without reducing its security level.展开更多
基金This work was supported by the Major Program of National Natural Science Foundation of China(11290141).
文摘Signature,widely used in cloud environment,describes the work as readily identifying its creator.The existing signature schemes in the literature mostly rely on the Hardness assumption which can be easily solved by quantum algorithm.In this paper,we proposed an advanced quantum-resistant signature scheme for Cloud based on Eisenstein Ring(ETRUS)which ensures our signature scheme proceed in a lattice with higher density.We proved that ETRUS highly improve the performance of traditional lattice signature schemes.Moreover,the Norm of polynomials decreases significantly in ETRUS which can effectively reduce the amount of polynomials convolution calculation.Furthermore,storage complexity of ETRUS is smaller than classical ones.Finally,according to all convolution of ETRUS enjoy lower degree polynomials,our scheme appropriately accelerate 56.37%speed without reducing its security level.