期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An imine-linked covalent organic framework as the host material for sulfur loading in lithium–sulfur batteries 被引量:7
1
作者 Jianyi Wang liping si +6 位作者 Qin Wei Xujia Hong Ligui Lin Xin Li Jingyi Chen Peibiao Wen Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期54-60,共7页
Lithium–sulfur(Li–S) batteries have high theoretical specific capacity, providing new opportunities for the next generation of secondary battery. Covalent organic framework(COF) as a new porous crystalline material ... Lithium–sulfur(Li–S) batteries have high theoretical specific capacity, providing new opportunities for the next generation of secondary battery. Covalent organic framework(COF) as a new porous crystalline material has been used as the host material in Li–S battery to improve the cell's cycling stability. In this paper, an imine-linked TAPB-PDA-COF was applied as the host material for sulfur loading(60%) in Li–S battery. The TAPB-PDA-COF has a beehive-like morphology with high thermal stability(up to 500 ℃).In the electrochemical experiment, the performance of the composite cathode with acetylene black(AB) and super-P(S-P) as the conductive additives was studied individually. The initial discharge capacity under 0.2 A/g current density was 991 mAh/g and 1357 mAh/g for TAPB-PDA-COF/S@A-B and TAPB-PDACOF/S@S-P, respectively. The better result of S-P based cathode than A-B could be due to the better conductivity of the S-P, as proved by the EIS results. When further increased the current density to 2 A/g,the S-P based composite cathode can still deliver a comparable initial discharge capacity of 630 and 274 mAh/g capacity remained after 940 cycles. This results will inspire researchers develop more suitable conductive additives together with the host materials for high performance Li–S battery. 展开更多
关键词 Lithium-sulfur BATTERIES COVALENT organic framework HOST material Conductive additives
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部