Wuyi Mountain,located in the north of Fujian Province,China,is renowned for its abundant medicinal plant resources.In July 2014,the 8th(second team)of Shenyang Pharmaceutical University’s Chinese Medicine Resources S...Wuyi Mountain,located in the north of Fujian Province,China,is renowned for its abundant medicinal plant resources.In July 2014,the 8th(second team)of Shenyang Pharmaceutical University’s Chinese Medicine Resources Scientific Expedition Team conducted field investigation in the area.Through specimen collection and extensive literature review,the team identified and analyzed 223 vascular plant species from 175 genera and 85 families.The most dominant families were Compositae and Rosaceae,and perennial herbs were the predominant species,accounting for 44.39%of the total species identified.Notably,we documented five precious and rare medicinal plants unique to Wuyi Mountain.This study updates the database of plant resources and diversity in the region,providing a valuable reference for future studies.Finally,we put forward some suggestions to enhance the conservation and sustainable utilization of Wuyi Mountain’s plant resources.展开更多
This study is one of the first to focus on the unexpected drug leakage from discoidal recombinant high-density lipoproteins(d-rHDLs)as a consequence of remodeling process,mainly associated with lecithin-cholesterol ac...This study is one of the first to focus on the unexpected drug leakage from discoidal recombinant high-density lipoproteins(d-rHDLs)as a consequence of remodeling process,mainly associated with lecithin-cholesterol acyltransferase(LCAT)during their metabolic process.Here,a newly monocholesterylsuccinate(CHS)modified paclitaxel-loaded drHDLs(cP-d-rHDLs)were constructed successfully through structural modification,thus aiming to improve the performance of d-rHDLs.And next their in vitro physiochemical properties and pharmacokinetics in SpragueeDawley rats were elaborately investigated.Collectively our studies demonstrated that cP-d-rHDLs,whose remodeling behaviors were restrained effectively after structural modification,exhibited more excellent and promising properties as novel delivery vehicles for anti-cancer agents.展开更多
The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H...The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.展开更多
The carotenoid in sweet potato has a high health value for the human body,and Harvest Plus has also carried out the breeding to improve the nutritional quality of sweet potatoes in order to address the health problems...The carotenoid in sweet potato has a high health value for the human body,and Harvest Plus has also carried out the breeding to improve the nutritional quality of sweet potatoes in order to address the health problems of people nutrient-deficient areas.Nanshu 012 is a new high-quality orange-fleshed sweet potato variety rich in carotenoid,bred by Nanchong Academy of Agricultural Sciences from the " Boga × Sanheshu" hybrid.In the regional test of sweet potato varieties in Sichuan Province during 2009-2010,the average fresh potato yield was 24600 kg/ha,the average dry matter percentage was 29.0 % and the average preserved sweet potato yield was 7152.0 kg/ha;in the production test,the average fresh potato yield was 28410.0 kg/ha and the average preserved sweet potato yield was 8734.5 kg/ha.The multi-point sampling analysis showed that the total sugar content of fresh potato was 5.28 %,protein content was 1.43 %,vitamin C content was 28.9 mg/100 g and carotenoid content was 5.21 mg/100 g.This variety was identified by Sichuan Crop Variety Approval Committee in March 2012,with high fresh potato yield,sweetness,rich carotenoid and resistance to black spot.It is an orange-fleshed sweet potato variety suitable for eating and food processing,and it should be planted in the plot with moderate fertility or above,and should be planted and harvested as early as possible.展开更多
The blood–brain barrier(BBB) and the poor ability of many drugs to cross that barrier greatly limits the efficacy of chemotherapies for glioblastoma multiforme(GBM). The present study exploits albumin as drug deliver...The blood–brain barrier(BBB) and the poor ability of many drugs to cross that barrier greatly limits the efficacy of chemotherapies for glioblastoma multiforme(GBM). The present study exploits albumin as drug delivery vehicle to promote the chemotherapeutic efficacy of paclitaxel(PTX) by improving the stability and targeting efficiency of PTX/albumin nanoparticles(NPs). Here we characterize PTX-loaded human serum albumin(HSA) NPs stabilized with intramolecular disulfide bonds and modified with substance P(SP) peptide as the targeting ligand. The fabricated SP-HSA-PTX NPs exhibited satisfactory drug-loading content(7.89%) and entrapment efficiency(85.7%) with a spherical structure(about 150 nm) and zeta potential of -12.0 mV. The in vitro drug release from SP-HSA-PTX NPs occurred in a redox-responsive manner. Due to the targeting effect of the SP peptide, cellular uptake of SP-HSA-PTX NPs into brain capillary endothelial cells(BCECs) and U87 cells was greatly improved.The low IC_(50), prolonged survival period and the obvious pro-apoptotic effect shown by TUNEL analysis all demonstrated that the fabricated SP-HSA-PTX NPs showed a satisfactory anti-tumor effect and could serve as a novel strategy for GBM treatment.展开更多
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosagecontrolled approaches. Cha...Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosagecontrolled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors(changes in p H,redox gradients, or enzyme concentration) or exogenous factors(light or thermos-stimulation).展开更多
The Pd catalyst supported on cryptomelanetype manganese oxide octahedral molecular sieve (OMS- 2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate ove...The Pd catalyst supported on cryptomelanetype manganese oxide octahedral molecular sieve (OMS- 2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over xPd/OMS-2 has been investigated. The results show that the Pd loading plays an important role on the physicochemical properties of the xPd/OMS-2 catalysts which outperform the Pd-free counterpart with the 0.5Pd/ OMS-2 catalyst being the best. The temperature for 50% conversion was 25, 240 and 160 ℃, and the temperature for 90% conversion was 55,285 and 200 ℃ for oxidation of CO, toluene, and ethyl acetate, respectively. The low- temperature reducibility and high oxygen mobility ofxPd/ OMS-2 are the factors contributable to the excellent catalytic performance of 0.5Pd/OMS-2.展开更多
The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning elect...The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N2 adsorption-desorption, H2-TPR, O2-TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities ofyMn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the yMn5Cu/Ti- Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10^- 3 mmol· g^-1· s^-1 and the lowest T50%and T100% of 56℃ and 86℃, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest 02 desorption temperature, and the highest surface Mn3+/ Mn4+ atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of ehemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.展开更多
文摘Wuyi Mountain,located in the north of Fujian Province,China,is renowned for its abundant medicinal plant resources.In July 2014,the 8th(second team)of Shenyang Pharmaceutical University’s Chinese Medicine Resources Scientific Expedition Team conducted field investigation in the area.Through specimen collection and extensive literature review,the team identified and analyzed 223 vascular plant species from 175 genera and 85 families.The most dominant families were Compositae and Rosaceae,and perennial herbs were the predominant species,accounting for 44.39%of the total species identified.Notably,we documented five precious and rare medicinal plants unique to Wuyi Mountain.This study updates the database of plant resources and diversity in the region,providing a valuable reference for future studies.Finally,we put forward some suggestions to enhance the conservation and sustainable utilization of Wuyi Mountain’s plant resources.
基金This study is financially supported by National Science Foundation Grant of China(No.81072587)Jiangsu Province Ordinary College and University Innovative Research Programs(No.CXZZ110805)+1 种基金the Major Project of National Science and Technology of China for New Drugs Development(No.2009ZX09310-004)the Special Found Project of Universities’Basic Scientific Research of Central Authorities(No.ZJ11253).
文摘This study is one of the first to focus on the unexpected drug leakage from discoidal recombinant high-density lipoproteins(d-rHDLs)as a consequence of remodeling process,mainly associated with lecithin-cholesterol acyltransferase(LCAT)during their metabolic process.Here,a newly monocholesterylsuccinate(CHS)modified paclitaxel-loaded drHDLs(cP-d-rHDLs)were constructed successfully through structural modification,thus aiming to improve the performance of d-rHDLs.And next their in vitro physiochemical properties and pharmacokinetics in SpragueeDawley rats were elaborately investigated.Collectively our studies demonstrated that cP-d-rHDLs,whose remodeling behaviors were restrained effectively after structural modification,exhibited more excellent and promising properties as novel delivery vehicles for anti-cancer agents.
基金Supported by the National Natural Science Foundation of China(21277008,20777005)the Natural Science Foundation of Beijing(8082008)
文摘The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.
基金Supported by Modern Agricultural Industry Technology System Construction Project(CARS-11-C-23)Nanchong Comprehensive Experiment Station Project(CARS-11-C-23)+1 种基金HarvestPlus Fund(HP8272-03)Key Research Project of Sichuan Province(2016NYZ0049)
文摘The carotenoid in sweet potato has a high health value for the human body,and Harvest Plus has also carried out the breeding to improve the nutritional quality of sweet potatoes in order to address the health problems of people nutrient-deficient areas.Nanshu 012 is a new high-quality orange-fleshed sweet potato variety rich in carotenoid,bred by Nanchong Academy of Agricultural Sciences from the " Boga × Sanheshu" hybrid.In the regional test of sweet potato varieties in Sichuan Province during 2009-2010,the average fresh potato yield was 24600 kg/ha,the average dry matter percentage was 29.0 % and the average preserved sweet potato yield was 7152.0 kg/ha;in the production test,the average fresh potato yield was 28410.0 kg/ha and the average preserved sweet potato yield was 8734.5 kg/ha.The multi-point sampling analysis showed that the total sugar content of fresh potato was 5.28 %,protein content was 1.43 %,vitamin C content was 28.9 mg/100 g and carotenoid content was 5.21 mg/100 g.This variety was identified by Sichuan Crop Variety Approval Committee in March 2012,with high fresh potato yield,sweetness,rich carotenoid and resistance to black spot.It is an orange-fleshed sweet potato variety suitable for eating and food processing,and it should be planted in the plot with moderate fertility or above,and should be planted and harvested as early as possible.
基金supported by the National Natural Science Funds of China (21602030 and 81172993)National Basic Research Program of China (973 Program, 2013CB932500), Shanghai Sailing Program (16YF1400900)+1 种基金Scientific Research Foundation of Fudan University for Talent Introduction (JJF301103)National Science Fund for Distinguished Young Scholars (81425023)
文摘The blood–brain barrier(BBB) and the poor ability of many drugs to cross that barrier greatly limits the efficacy of chemotherapies for glioblastoma multiforme(GBM). The present study exploits albumin as drug delivery vehicle to promote the chemotherapeutic efficacy of paclitaxel(PTX) by improving the stability and targeting efficiency of PTX/albumin nanoparticles(NPs). Here we characterize PTX-loaded human serum albumin(HSA) NPs stabilized with intramolecular disulfide bonds and modified with substance P(SP) peptide as the targeting ligand. The fabricated SP-HSA-PTX NPs exhibited satisfactory drug-loading content(7.89%) and entrapment efficiency(85.7%) with a spherical structure(about 150 nm) and zeta potential of -12.0 mV. The in vitro drug release from SP-HSA-PTX NPs occurred in a redox-responsive manner. Due to the targeting effect of the SP peptide, cellular uptake of SP-HSA-PTX NPs into brain capillary endothelial cells(BCECs) and U87 cells was greatly improved.The low IC_(50), prolonged survival period and the obvious pro-apoptotic effect shown by TUNEL analysis all demonstrated that the fabricated SP-HSA-PTX NPs showed a satisfactory anti-tumor effect and could serve as a novel strategy for GBM treatment.
文摘Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosagecontrolled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors(changes in p H,redox gradients, or enzyme concentration) or exogenous factors(light or thermos-stimulation).
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005) and Natural Science Foundation of Beijing (Grant No. 8082008).
文摘The Pd catalyst supported on cryptomelanetype manganese oxide octahedral molecular sieve (OMS- 2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over xPd/OMS-2 has been investigated. The results show that the Pd loading plays an important role on the physicochemical properties of the xPd/OMS-2 catalysts which outperform the Pd-free counterpart with the 0.5Pd/ OMS-2 catalyst being the best. The temperature for 50% conversion was 25, 240 and 160 ℃, and the temperature for 90% conversion was 55,285 and 200 ℃ for oxidation of CO, toluene, and ethyl acetate, respectively. The low- temperature reducibility and high oxygen mobility ofxPd/ OMS-2 are the factors contributable to the excellent catalytic performance of 0.5Pd/OMS-2.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 21277008 and 20777005) and Natural Science Foundation of Beijing (No. 8082008).
文摘The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N2 adsorption-desorption, H2-TPR, O2-TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities ofyMn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the yMn5Cu/Ti- Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10^- 3 mmol· g^-1· s^-1 and the lowest T50%and T100% of 56℃ and 86℃, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest 02 desorption temperature, and the highest surface Mn3+/ Mn4+ atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of ehemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.