期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Direct atomic-level insight into oxygen reduction reaction on size-dependent Pt-based electrocatalysts from density functional theory calculations
1
作者 Fangren Qian lishan peng +2 位作者 Yujuan Zhuang Lei Liu Qingjun Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期140-146,共7页
Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR cataly... Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve. 展开更多
关键词 Density functional theory(DFT) calculations Pt-based electrocatalysts Oxygen reduction reaction
下载PDF
ZnCl2辅助制备FeNC催化剂:增加活性位点密度以提高氧还原活性 被引量:5
2
作者 毛占鑫 王敏杰 +5 位作者 刘璐 彭立山 陈四国 李莉 李静 魏子栋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期799-806,共8页
Fe、N掺杂的碳材料(FeNC)是最有希望取代贵金属用作氧还原反应的催化剂之一.然而,传统FeNC材料制备过程中所采用的高温碳化-蚀刻步骤会造成相邻Fe原子随温度升高而逐渐团聚,形成较大尺寸金属铁单质、铁氧化物或碳化物的聚集颗粒,并在后... Fe、N掺杂的碳材料(FeNC)是最有希望取代贵金属用作氧还原反应的催化剂之一.然而,传统FeNC材料制备过程中所采用的高温碳化-蚀刻步骤会造成相邻Fe原子随温度升高而逐渐团聚,形成较大尺寸金属铁单质、铁氧化物或碳化物的聚集颗粒,并在后续酸刻蚀处理中被移出,铁元素损失严重,无法形成有效活性位点.同时高温下含N小分子物质也容易分解并从产物中逸出,导致N元素掺杂量较低.直接焙烧还加重了碳的团聚,造成材料内部孔道有限,比表面积低,活性位难以暴露于三相界面.因此,焙烧处理过程中如何形成Fe、N元素的高含量、均匀分散掺杂,同时构建大量内部联通孔道,是形成高活性Fe NC催化剂的关键.本文采用ZnCl2辅助焙烧方法制备出具有高活性位点密度和大材料孔隙率的Fe NC催化剂;通过TEM、N2吸附和XPS等一系列物理手段对所制备样品进行了形貌、结构及组成表征,提出了ZnCl2辅助催化剂合成机理;结合CV和LSV等电化学测试结果详细探讨了ZnCl2辅助方法对催化剂结构和催化性能的影响.普通共价盐ZnCl2在283–732°C的较宽温度范围内呈现熔融态,同卟啉铁(Fe Pc)碳化温度区间恰好匹配,可以辅助Fe NC催化剂进行元素掺杂和多级孔结构的构建.首先,在熔融状态下,过量的ZnCl2形成分支结构,阻止相邻Fe物种直接接触和聚集,有利于形成高度分散的FeNx活性位点.其次,熔融的ZnCl2像盖子一样包封住催化剂前驱体,避免了挥发性含N小分子的快速逸出,使得N原子在高温下有可能重新在碳骨架中形成掺杂,有助于在材料中保留更高比例的活性N物质.在ZnCl2的辅助下碳化Fe Pc得到的Sphere-FeNC样品具有高达4.37%的总N含量,并且Fe-Nx含量也高达0.71%,分别是不使用ZnCl2制备的对比催化剂FeNC-none的3.2和13倍.同时, ZnCl2辅助合成方法将Fe NC材料的比表面积增加4.5倍,总孔体积增加7倍.三电极氧还原反应性能测试表明, Sphere-Fe NC在碱性和酸性介质的初始电位分别为1.080和1.015 V(vsRHE),半波电位分别为0.906和0.799 V (vs RHE),活性优异.以Sphere-FeNC为阴极催化剂组装的单电池功率达到0.72 W mg–1,高于已报道的Fe NC和Pt/C催化剂.因此, ZnCl2辅助焙烧碳化的方法可以作为一种普适手段用于构建具有高密度活性元素掺杂和大量微孔介孔分布的碳基催化材料,并应用于各类催化反应. 展开更多
关键词 FeNC催化剂 氯化锌 多孔碳 氧还原反应 燃料电池
下载PDF
通过温和的镍腐蚀制备珊瑚状FeNi(OH)_x/Ni作为一种一体化高效水分解电极(英文) 被引量:2
3
作者 向锐 童成 +5 位作者 王尧 彭立山 聂瑶 李莉 黄寻 魏子栋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第11期1736-1745,共10页
高效稳定并可同时催化析氧反应(OER)和析氢反应(HER)的非贵金属催化剂对于实现廉价水分解电解槽的商业化十分重要.虽然众多研究表明FeNi(OH)_x是一种极具潜力的催化剂,但是在基础研究与更有实用前景的电极之间仍有许多空白亟待填补.比如... 高效稳定并可同时催化析氧反应(OER)和析氢反应(HER)的非贵金属催化剂对于实现廉价水分解电解槽的商业化十分重要.虽然众多研究表明FeNi(OH)_x是一种极具潜力的催化剂,但是在基础研究与更有实用前景的电极之间仍有许多空白亟待填补.比如,基础研究多基于薄膜电极,其催化剂内部导电性的影响通常可以忽略.而基于实用化的电极则需要负载较厚的催化剂膜以获得更多的活性位,与此同时,其催化剂内部导电性的不利影响将会增大.此外,物质传递方面也会出现类似的情况.因此,一些在基础研究中显示出高本征活性的催化剂,在更加接近实际应用的体系下难以表现出预期的高活性.对于这一问题,目前鲜有相关的研究报道.基于上述分析,本文报道了一种经济且环保的方法,以制备珊瑚状的FeNi(OH)_x/Ni催化剂.在碱性条件下,该催化剂具有同时催化OER和HER,从而实现全水分解的能力.在催化剂的制备过程中,具有高本征活性的FeNi(OH)_x纳米片借助Fe(NO3_)_3对Ni温和的腐蚀过程,被原位负载到珊瑚状镍骨架上.这些纳米片与电沉积制备的珊瑚镍骨架以及3D泡沫镍基底一起构成了一体化的析气电极.这样的电极结构有助于暴露活性位、电解质快速传递和气体产物的迅速释放.此外,与珊瑚状金属镍骨架的复合也有利于减轻较厚的催化剂薄膜所带来的导电性降低的负面影响.在1.0 mol L^(-1) KOH溶液中,以FeNi(OH)_x/Ni同时作为阳极和阴极而构建的对称电解槽表现出了优异的催化活性,只需要施加1.52 V的槽压即获得10 mA cm^(-2)的催化电流密度.其活性甚至优于当前最佳的由贵金属催化剂RuO_2和Pt/C构建的非对称电解槽所表现出来的活性(10mA cm^(-2的槽压为1.55 V).本文提供了一种简便易行且十分可靠的制备更加实用。 展开更多
关键词 全水分解 电催化 Fe/Ni氢氧化物 碱性电解槽 一体化电极
下载PDF
电催化析氧反应过渡金属磷化物和硫化物催化剂研究进展(英文) 被引量:20
4
作者 彭立山 Syed Shoaib Ahmad Shah 魏子栋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1575-1593,共19页
对化石能源的依赖所造成的环境污染和能源危机在全球引起了广泛的关注.氢能由于其高能量密度、低分子质量以及清洁无污染的优点,被认为是人类根本性解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢的重要方法,是现代清... 对化石能源的依赖所造成的环境污染和能源危机在全球引起了广泛的关注.氢能由于其高能量密度、低分子质量以及清洁无污染的优点,被认为是人类根本性解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢的重要方法,是现代清洁能源技术的重要组成部分.水电解由阴极析氢(HER)和阳极析氧(OER)两个半反应构成.对于HER反应,其反应是基于二电子转移过程,反应过程相对容易进行.相比于HER反应,OER反应涉及四电子转移及氧-氧键形成,其反应动力学缓慢,是影响水电解效率的主要原因.因此,为了提高电解水制氢的能量转化效率,发展OER电催化剂成为水电解制氢技术的关键.在过去的十余年间,硫化物、硒化物、磷化物、硼化物等非贵金属基OER电催化剂被大量地研究及报道并取得了长足发展.在这些催化剂中,金属磷化物和硫化物不仅具有成本优势,而且在析氧过电位、耐久性方面正趋接近甚至超越RuO_2和IrO_2等贵金属催化剂,颇具应用潜力.本文总结磷化物和硫化物作为OER电催化剂的研究进展,重点介绍了磷化物和硫化物性能提升策略及其在OER过程中催化反应活性位的变化.本文首先介绍了电解水析氧反应在不同电解质中的反应机理,讨论了析氧反应在动力学和热力学过程的主要障碍.通过对大量文献的归纳,本文分别综述了磷化物和硫化物的化学性质、合成方法和催化性能,介绍了近年来磷化物和硫化物的重要研究进展.通过分析催化剂导电性、质子传输、活性面积、界面化学等因素对催化析氧反应的影响,总结了磷化物和硫化物电催化OER性能提升的策略.由于磷化物和硫化物在OER强氧化条件下,电催化剂表面的成分、物相及结构均会发生显著变化,进而催化反应活性位也会发生相应改变.本文综述了磷化物和硫化物在OER反应过程前后表面组分的变化,探讨了磷化物和硫化物作为OER电催化剂的活性组分,为进一步提高磷化物和硫化物的电催化析氧反应性能提供了崭新的思路. 展开更多
关键词 析氧反应 电催化剂 金属磷化物 金属硫化物 原位氧化 活性组分
下载PDF
Zn单原子微环境结构的调控:促进氧还原反应的ZnN_(4)P/C活性位点 被引量:2
5
作者 Syed Shoaib Ahmad Shah Tayyaba Najam +3 位作者 杨姣 Muhammad Sufyan Javed 彭立山 魏子栋 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2193-2201,共9页
日益严峻的能源危机及环境污染问题促使人们研发清洁能源转换和存储技术.燃料电池和金属-空气电池因功率密度高、操作方便而成为备受关注的能量转换器件.氧还原反应(ORR)是燃料电池和金属-空气电池中必不可少的关键反应.然而,由于氧还... 日益严峻的能源危机及环境污染问题促使人们研发清洁能源转换和存储技术.燃料电池和金属-空气电池因功率密度高、操作方便而成为备受关注的能量转换器件.氧还原反应(ORR)是燃料电池和金属-空气电池中必不可少的关键反应.然而,由于氧还原反应的动力学缓慢,极大地限制了反应的快速进行.Pt基电催化剂虽然表现出良好的ORR活性,但稀缺性和稳定性差的缺点制约了其在燃料电池和金属空气电池领域的大规模商业化应用.单原子催化剂(SACs)由于具有丰富的活性位点和几乎100%的金属利用率而成为电催化研究的热点.SACs的几何构型和电子构型很大程度取决于其独特的原子微环境调制(MEM),包括催化中心的局部配位环境和电子状态.因此,SACs的活性、选择性和稳定性与它们的MEM直接相关.由于传统催化剂缺乏结构的精确解析和可定制性,理解和调控催化位点的MEM对多相催化反应性能的影响仍然具有挑战性和局限性.本文通过两步热解法可控制备N,P双掺杂碳基底负载Zn单原子催化剂(Zn-N_(4)P/C),实现对Zn单原子微环境的原子级调控.实验和理论计算研究表明,N/P配位对Zn单原子催化剂电子结构具有协同调控的作用,从而改变Zn周围的局部电荷分布,降低ORR基元反应的势垒.XPS结果显示,Zn-N_(4)P/C中N和P同时存在,且其Zn的结合能相对ZnN_(4)/C向高结合能方向偏移,表明引入的P与相邻的ZnN_(4)间发生电荷转移,影响了Zn单原子的电子结构.XAS结果表明,ZnN_(4)P/C的结构是由位于第二壳层的P与Zn-N_(4)相连构成,且由于P的电负性更强,导致相邻Zn-N的电子转移到N-P键,Zn-N键的键长变长,Zn的价态显著升高.Zn的K边小波转换结果表明,ZnN_(4)P/C催化剂中Zn原子的最大等高强度中心相对于ZnPc发生了偏移,进一步表明P的引入对Zn的电子结构产生了影响.优化后的ZnN_(4)P/C催化剂在0.1 mol·L^(-1)KOH电解质中的ORR半波电位为0.861 V,比单金属ZnN_(4)/C和Pt/C(20%)更高.此外,将该催化剂用于锌空电池的阴极ORR催化剂,所得电池的最大峰值功率密度(249.6mWcm^(-2))、比电容(779 mAhg^(-1))均优于贵金属Pt/C催化剂,且该电池能够在10 mAcm^(-2)条件下可稳定充放电循环150 h.DFT计算结果表明,ORR活性大幅提高可归因于P的掺杂使电荷在N和Zn周围富集,从而优化了活性中心与O2结合能,并加快了ORR反应的电子转移速度. 展开更多
关键词 N P掺杂 氧还原 锌-空电池 单原子催化剂 微环境调控
下载PDF
Catalyst Engineering for Electrochemical Energy Conversion from Water to Water:Water Electrolysis and the Hydrogen Fuel Cell 被引量:2
6
作者 lishan peng Zidong Wei 《Engineering》 SCIE EI 2020年第6期653-679,共27页
In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an i... In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an ideal energy system that can produce fuels via sustainable,fossil-free pathways.However,the energy conversion efficiency of two functioning technologies in this energy system—namely,water electrolysis and the fuel cell—still has great scope for improvement.This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen-water energy system and discusses the key barriers in the hydrogen-and oxygen-involving reactions that occur on the catalyst surface.By means of the scaling relations between reactive intermediates and their apparent catalytic performance,this article summarizes the frameworks of the catalytic activity trends,providing insights into the design of highly active electrocatalysts for the involved reactions.A series of structural engineering methodologies(including nano architecture,facet engineering,polymorph engineering,amorphization,defect engineering,element doping,interface engineering,and alloying)and their applications based on catalytic performance are then introduced,w让h an emphasis on the rational guidance from previous theoretical and experimental studies.The key scientific problems in the electrochemical hydrogen-water conversion system are outlined,and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency. 展开更多
关键词 Renewable energy system Hydrogen-water energy conversion ELECTROCATALYSIS Electrocatalyst engineering Structure design Water electrolysis Fuel cell
下载PDF
Improved hydrogen oxidation reaction under alkaline conditions by Au–Pt alloy nanoparticles 被引量:2
7
作者 Lijuan Lu lishan peng +3 位作者 Li Li Jing Li Xun Huang Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期52-56,I0003,共6页
This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation o... This work demonstrates the outstanding performance of alloyed Au1 Pt1 nanoparticles on hydrogen oxidation reaction(HOR)in alkaline solution.Due to the weakened hydrogen binding energy caused by uniform incorporation of Au,the alloyed Au1Pt1/C nanoparticles exhibit superior HOR activity than commercial PtRu/C.On the contrary,the catalytic performance of the phase-segregated Au2Pt1/C and Au1Pt1/C bimetallic nanoparticles in HOR is significantly worse.Moreover,Au1Pt1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles,while performance attenuation of commercial PtRu/C is high up to 15% under the same condition.Our results indicate that the alloyed Au1Pt1/C is a promising candidate to substitute commercial PtRu/C for hydrogen oxidation reaction in alkaline electrolyte. 展开更多
关键词 Hydrogen oxidation reaction Pt-Au alloy NANOPARTICLES Alkaline electrolyte
下载PDF
Insight into the boosted activity of TiO2–CoP composites for hydrogen evolution reaction:Accelerated mass transfer,optimized interfacial water,and promoted intrinsic activity
8
作者 Mingming Deng Hongmei Yang +6 位作者 lishan peng Ling Zhang Lianqiao Tan Guiju He Minhua Shao Li Li Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期111-120,I0005,共11页
The use of abundant elements in the earth as electrocatalytic hydrogen production catalysts is of great significance for hydrogen energy cycling.Herein,we report amorphous TiO_(2)-decorated CoP/NF(TiO_(2)–CoP/NF)as a... The use of abundant elements in the earth as electrocatalytic hydrogen production catalysts is of great significance for hydrogen energy cycling.Herein,we report amorphous TiO_(2)-decorated CoP/NF(TiO_(2)–CoP/NF)as an excellent electrocatalyst for alkaline hydrogen evolution reaction(HER).The welldispersed amorphous TiO_(2)on nanoneedle-like CoP arrays preserves the crystal structure of CoP and changes its electronic structure by interfacial charge transfer.Compared to CoP/NF catalyst,the Ti O_(2)–CoP/NF composite catalyst exhibits high HER activity with an overpotential of 61 mV at 10 mA cm^(-2)and high stability.Importantly,it almost maintains the Volmer step as a rate-determining step(RDS)and the Tafel slope at a wide cathodic potential range showing the fast kinetics under large polarization regions.Theoretical simulations reveal that the combination of TiO_(2)and CoP selectively accelerates the hydrated K+diffusion,regulates the interfacial water orientation to adapt to the subsequent smooth water dissociation,and optimizes*H adsorption/H_(2)desorption.The strengthened coupling of HER multi-scale-processes on transition metal compound composites catalysts is the underlying mechanism for improving HER activity. 展开更多
关键词 Alkaline water electrolysis Transition metal compound Composite catalysts HER Density functional theory
下载PDF
Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN_(4)-rich carbon support
9
作者 Jin Long Xingqun Zheng +3 位作者 Bin Wang Chenzhong Wu Qingmei Wang lishan peng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期265-271,共7页
Developing platinum-group-metal(PGM)catalysts possessing strong metal-support interaction and controllable PGM size is urgent for the sluggish oxygen reduction reaction(ORR)in proton-exchange membrane fuel cells.Herei... Developing platinum-group-metal(PGM)catalysts possessing strong metal-support interaction and controllable PGM size is urgent for the sluggish oxygen reduction reaction(ORR)in proton-exchange membrane fuel cells.Herein,we propose an in-situ self-assembled reduction strategy to successfully induce highly-dispersed sub-3nm platinum nanoparticles(Pt NPs)to attach on resin-derived atomic Co coordinated by N-doped carbon substrate(Pt/Co_(SA)-N-C)for ORR.To be specific,the interfacial electron interaction effect,along with a highly robust Co_(SA)-N-C support endow the as-fabricated Pt/Co_(SA)-N-C catalyst with significantly enhanced catalytic properties,i.e.,a mass activity(MA)of 0.719 A/mgPt at 0.9 ViR-free and a reduction of 24.2%in MA after a 20,000-cycles test.Density functional theory(DFT)calculations demonstrate that the enhanced electron interaction between Pt and Co_(SA)-N-C support decreases the dband center of Pt,which is in favor of lowering the desorption energy of ^(*)OH on Pt/Co_(SA)-N-C surface and accelerating the formation of H_(2)O,thus enhance the instinct activity of ORR.Furthermore,the higher binding energy between Pt and Co_(SA)-N-C compared to Pt and C indicates that the migration of Pt has been suppressed,which theoretically explains the improved durability of Pt/Co_(SA)-N-C.Our work offers an enlightenment on constructing composite Pt-based catalysts with multiple active sites. 展开更多
关键词 Fuel cells Oxygen reduction reaction PLATINUM Single-CoN_(4)-rich carbon support Metal-substrate interaction
原文传递
Size and near-surface engineering in weak-oxidative confined space to fabricate 4 nm L1_(0)-PtCo@Pt nanoparticles for oxygen reduction reaction 被引量:2
10
作者 Yifei Liao lishan peng +4 位作者 Chaoling Wu Yigang Yan Haijiao Xie Yungui Chen Yao Wang 《Nano Research》 SCIE EI CSCD 2023年第5期6622-6631,共10页
The near-surface structure of the Pt-based alloy including the surface and subsurface structures is prominent to their electrocatalytic performance.Modulating the near-surface structure of PtCo intermetallics with sma... The near-surface structure of the Pt-based alloy including the surface and subsurface structures is prominent to their electrocatalytic performance.Modulating the near-surface structure of PtCo intermetallics with small particle size could efficiently optimize the binding force between Pt and oxygen and finally enhance its oxygen reduction reaction(ORR)performance.Here we simultaneously achieve the size controlling and surface modulation of intermetallic nanoparticles(NPs)in a weak-oxidative confined space with abundant uncoordinated oxygen atoms.1–2 atomic layers of concave Pt-rich surface were successfully constructed on 4 nm L1_(0)-PtCo core after removing Co–O species which is derived from the segregation of the subsurface Co to the surface induced by the uncoordinated oxygen atoms.Owing to the elaborate structure,PtCo-1000/C catalyst shows significant improvement in both activity(1.290 A∙mg_(Pt)^(−1)and 1.529 mA∙cm_(Pt)^(−2) at 0.9 V vs.reversible hydrogen electrode(RHE))and stability(85.2%of initial mass activity after accelerated degression tests(ADTs))even the production is scaled up to gram level.Density functional theory calculations suggest that the cave Pt site optimizes the protonation of*O,which finally boosts the ORR performance. 展开更多
关键词 near-surface engineering core–shell structure INTERMETALLICS oxygen reduction reaction
原文传递
双功能双位点单原子催化剂在可充电锌-空气电池氧电催化中的研究进展
11
作者 谢小英 翟泽宇 +3 位作者 彭立山 张敬波 尚露 张铁锐 《Science Bulletin》 SCIE EI CAS CSCD 2023年第22期2862-2875,M0006,共15页
可充电锌空气电池以其低成本和高能量密度而受到广泛关注.然而,其空气电极上发生的氧还原反应和氧析出反应的动力学缓慢且过程复杂,涉及四电子转移过程,这严重制约了可充电锌空气电池的大规模应用.碳载单原子催化剂在氧电催化领域展现... 可充电锌空气电池以其低成本和高能量密度而受到广泛关注.然而,其空气电极上发生的氧还原反应和氧析出反应的动力学缓慢且过程复杂,涉及四电子转移过程,这严重制约了可充电锌空气电池的大规模应用.碳载单原子催化剂在氧电催化领域展现出巨大的潜力,但其双功能氧电催化性能仍有待提高,这与活性位点的配位环境密切相关.相较于单位点单原子催化剂,双位点单原子催化剂可在原子水平上调整活性位点的配位环境,从而提高催化剂的双功能氧电催化性能.本文系统地总结了近年来双功能双位点碳载单原子催化剂在可充电锌-空气电池领域的研究进展.首先,阐述了氧电催化剂的催化机理和设计原则;随后讨论了金属-非金属原子协同策略和双金属原子协同策略在制备高性能双位点碳载单原子催化剂中的应用;最后,提出了双位点碳载单原子催化剂的发展前景和挑战,为合理设计高效双功能氧电催化剂提供了新思路. 展开更多
关键词 Dual-sites single-atom catalysts Bifunctional oxygen electrocatalysis Zinc-air batteries Coordination environment
原文传递
高性能电解水电极催化材料的设计及产品工程 被引量:14
12
作者 彭立山 魏子栋 《化学进展》 SCIE CAS CSCD 北大核心 2018年第1期14-28,共15页
随着市场竞争的加剧,以产品需求为导向精确定制符合需求的化学品成为化学工程研究发展的探索新方向。电解水制氢是生产高纯氢气并转换储存大规模可再生能源的一种有效方法。为实现高效的电-氢气转换效率,高性能的电解水析氢析氧电极是... 随着市场竞争的加剧,以产品需求为导向精确定制符合需求的化学品成为化学工程研究发展的探索新方向。电解水制氢是生产高纯氢气并转换储存大规模可再生能源的一种有效方法。为实现高效的电-氢气转换效率,高性能的电解水析氢析氧电极是必不可少的。电解水电极材料具有复杂的化学组成及多层次的结构,其中电极表面催化材料的物理化学性质和形貌结构是决定电解水性能的最主要因素。本文结合本课题组在电解水催化方面的研究工作,综述了近几年国内外电解水电极催化材料的最新研究进展,阐述了电解水电极催化材料以反应机理为导向的催化剂设计理论、以产品性能为导向的催化剂设计方法学(包括纳米结构构筑、晶面调控、载体复合、晶相调节、杂原子掺杂、合金化和聚合物表面修饰)及应用,针对化学产品工程的发展与需要,介绍了电解水电极催化材料跨越分子尺度、微纳结构及合成应用的产品设计和产品工程研究的关键科学问题和发展方向。 展开更多
关键词 氢能 电解水 催化材料 结构设计 产品工程
原文传递
Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions 被引量:10
13
作者 Yao Wang Linhui Chen +6 位作者 Zhanxin Mao lishan peng Rui Xiang Xianyi Tang Jianghai Deng Zidong Wei Qiang Liao 《Science Bulletin》 SCIE EI CAS CSCD 2019年第15期1095-1102,共8页
Metal-nitrogen doped carbon catalysts(M-N/C) with abundantly accessible M-Nxsites, particularly single metal atom M-N/C(SAM-N/C), have been developed as a substitute for expensive Pt-based catalysts.These catalysts ar... Metal-nitrogen doped carbon catalysts(M-N/C) with abundantly accessible M-Nxsites, particularly single metal atom M-N/C(SAM-N/C), have been developed as a substitute for expensive Pt-based catalysts.These catalysts are used to increase the efficiency of otherwise sluggish oxygen reduction reactions(ORR) and hydrogen evolution reactions(HER). However, although the agglomerated metal nanoparticles are usually easy to form, they are very difficult to remove due to the protective surface-coating carbon layers, a factor that significantly hampers SAM-N/C fabrication. Herein, we report a one-step pyrolysis approach to successfully fabricate single cobalt atom Co-N/C(SACo-N/C) by using a Co2+-SCN-coordination compound as the metal precursor. Thanks to the decomposition of Co2+-SCN-compound at lower temperature than that of carbon layer deposition, Co-rich particles grow up to larger ones before carbon layers formation. Even though encapsulated by the carbon layers, it is difficult for the large Co-rich particle to be completely sealed. And thus, it makes the Co atoms possible to escape from incomplete carbon layer, to coordinate with nitrogen atoms, and to form SACo-N/C catalysts. This SACo-N/C exhibits excellent performances for both ORR(half-wave potential of 0.878 V) and HER(overpotential at 10 mA/cm2 of178 m V), and is thus a potential replacement for Pt-based catalysts. When SACo-N/C is integrated into a Zn-O2 battery, battery with high open-circuit voltage(1.536 V) has high peak power density(266 mW/cm2)and large gravimetric energy density(755 mA h/gZn) at current densities of 100 mA/cm2. Thus, we believe that this strategy may offer a new direction for the effective generation of SAM-N/C catalysts. 展开更多
关键词 Carbon nanocomposites SINGLE-ATOM CATALYSTS H2 evolution O2 reduction Zn-O2 battery
原文传递
Fe-N-C氧还原电催化剂中FeN_(4)位点微观环境的调节 被引量:2
14
作者 王青 陆瑞虎 +10 位作者 杨予琪 李玄泽 陈广波 尚露 彭力山 Dongxiao Sun-Waterhouse Bruce C.C.Cowie 孟祥敏 赵焱 张铁锐 Geoffrey I.N.Waterhouse 《Science Bulletin》 SCIE EI CSCD 2022年第12期1264-1273,M0004,共11页
Fe-N-C电催化剂,即FeN_(4)单原子位点负载于氮掺杂的碳载体上,是一种优良的氧还原催化剂,有望取代贵金属铂催化剂,应用于金属空气电池和燃料电池.目前,提高Fe-N-C材料氧还原性能的策略包括:(1)提高铁单原子活性位点的数目;(2)调节铁单... Fe-N-C电催化剂,即FeN_(4)单原子位点负载于氮掺杂的碳载体上,是一种优良的氧还原催化剂,有望取代贵金属铂催化剂,应用于金属空气电池和燃料电池.目前,提高Fe-N-C材料氧还原性能的策略包括:(1)提高铁单原子活性位点的数目;(2)调节铁单原子中心与含氧中间体的吸附能,从而提高本征活性.该工作报道了一种简单NaCl熔盐煅烧Fe掺杂金属有机配合物前驱体(Fe-ZIF)的方法,可有效提高煅烧产物Fe-N-C催化剂中FeN_(4)单原子位点数量和本征活性.原位透射电子显微镜(TEM)实验结果表明:在高温煅烧过程中,NaCl蒸发后沉积附着在Fe-ZIF颗粒表面,加速Fe-ZIF中配体的分解和锌中心的挥发,从而使煅烧产物中碳载体呈多孔结构,并改变Fe单原子位点的配位环境.X射线吸收谱进一步表明,该Fe-N-C催化剂中Fe单原子位点的Fe-N键变长,Fe的氧化态降低,从而有利于氧还原反应中间体的脱附.因此,针对碱性氧还原反应过程,该催化剂表现出比商业化铂碳催化剂更优异的性能,并可作为锌空气电池阴极催化剂,用于手机充电. 展开更多
关键词 Fe-N-C MICROENVIRONMENT Optimized FeN_4 site Oxygen reduction reaction Zinc-air battery
原文传递
Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion 被引量:2
15
作者 lishan peng Zidong Wei 《Particuology》 SCIE EI CAS CSCD 2020年第1期19-33,共15页
Electrocatalytic materials with different morphologies,sizes,and components show different catalytic behavior in various heterogeneous catalytic reactions.It has been proved that the catalytic properties of these mate... Electrocatalytic materials with different morphologies,sizes,and components show different catalytic behavior in various heterogeneous catalytic reactions.It has been proved that the catalytic properties of these materials are strongly influenced by several factors at different levels,including the electrode morphology,reaction channels,three-phase interface,and surface active sites.Recent developments of mesoscience allow one to study the relationship between the apparent catalytic performance of electro-catalytic materials with these factors from different levels.In this review,following a brief introduction of new mesoscience,we summarize the effect of mesoscience on electrocatalytic material design,including modulating the geometric and electronic structures of materials focusing on morphology(particulate,fiber,film,array,monolith,and superlattice),pore structure(microporous,mesoporous,and hierarchical),size(single atoms,nanoclusters,and nanoparticles),multiple components(alloys,heterostructures,and multiple ligands),and crystal structures(crystalline,amorphous,and multiple crystal phases).By evaluating the electrocatalytic performance of catalytic materials tuned at the mesoscale,we paint a picture of how these factors at different levels affect the final system performance and then provide a new direction to better understand and design catalytic materials from the viewpoint of mesoscience. 展开更多
关键词 Mesoscience Electrocatalytic material design Hydrogen energy conversion ELECTROCATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部