期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多域判别核典型相关分析的辐射源指纹特征融合方法 被引量:1
1
作者 孙丽婷 王翔 黄知涛 《中国科学:信息科学》 CSCD 北大核心 2023年第1期146-163,共18页
辐射源个体识别(specific emitter identification,SEI)是指通过提取信号中蕴含的有关其发射来源的硬件指纹信息,来实现对特定信号辐射源的精确识别.SEI技术的关键在于指纹特征的提取.相关研究大多侧重于定义和提取新的指纹特征,较少关... 辐射源个体识别(specific emitter identification,SEI)是指通过提取信号中蕴含的有关其发射来源的硬件指纹信息,来实现对特定信号辐射源的精确识别.SEI技术的关键在于指纹特征的提取.相关研究大多侧重于定义和提取新的指纹特征,较少关注对已有特征的综合利用问题.鉴于不同分析域的特征对辐射源指纹的描述存在互补性,本文提出一种基于多域判別核典型相关分析(multi-domain discriminant kernel canonical correlation analysis,MDKCCA)的辐射源指纹多域特征融合方法,充分利用特征的标签信息以及特征间的互补性,在高维空间完成多域特征的降维与融合.以4个特征分析域8种常见指纹特征为依托,在4种不同类型的实测数据集上验证了算法的性能.结果证明,该方法无需人工特征寻优环节,可大幅降低融合特征的维度,对4类目标的准确识别率均达到95%以上,优于最优单一特征,同时优于基于直接级联或基于PCA(principal component analysis)降维变换的简单特征综合方法、基于神经网络的特征综合方法,以及基于判别相关分析(discriminant canonical correlation,DCA)等方法的特征融合方法. 展开更多
关键词 辐射源个体识别 特征融合 多域辐射源指纹特征 典型相关分析 特征提取
原文传递
Unintentional modulation evaluation in time domain and frequency domain
2
作者 liting sun Xiang WANG Zhitao HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期376-389,共14页
With the development of wireless communication technology, the electromagnetic environment has become more and more complex. Conventional signal identification methods are difficult to accurately identify illegal devi... With the development of wireless communication technology, the electromagnetic environment has become more and more complex. Conventional signal identification methods are difficult to accurately identify illegal devices. However, electromagnetic signals have an unavoidable device-specific characteristic unintentionally generated by a transmitter, appearing in the form of an Un Intentional Modulation(UIM), namely Radio Frequency Fingerprint(RFF). RFFs can be used to uniquely identify an emitter to match a received signal with its source. In this paper, the authors propose a novel RFF scheme to separate UIM part from the original signals from the time and frequency domain, and then utilize non-Gaussian measuring tools to extract a set of dimensionreduced secondary features. Additionally, Singular Value Reconstruction(SVR) is developed to extract UIM in the frequency spectrum. In time domain, a curve-fitting residual method is proposed to extract the UIM on the estimated instantaneous phase based on Maximum Likelihood Estimator(MLE). Various aspects of the proposed method are evaluated, including identification accuracy under various Signal-to-Noise Ratio(SNR) conditions, energy relationships between the UIM and the whole signal, and sensitivity to training set size. Compared with other methods, experimental results based on real-world signals prove that the proposed method has remarkable performance and high practicability. 展开更多
关键词 Instantaneous phase estimation Pattern recognition Radio Frequency Fingerprint(RFF) Singular Value Decomposition(SVD) Un Intentional Modulation(UIM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部