A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treat...A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.展开更多
基金Funded by the Open/Innovation Fund of Hubei Three Gorges Laboratory(No.SK212002)。
文摘A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.
基金Projects(52074298,51904207)supported by the National Natural Science Foundation of ChinaProject(8232056)supported by the Natural Science Foundation of Beijing Municipality,China+1 种基金Project(2022XDHZ12)supported by the Liulin Energy and Environment Academician Workstation,ChinaProject([2020]3008J)supported by the Science and Technology Programs in Guizhou Province,China。