Dopamine is an important neurotransmitter and biomarker that is involved in many physiological processes in the body as well as the control of the central nervous system. Therefore, it is crucial to accurately monitor...Dopamine is an important neurotransmitter and biomarker that is involved in many physiological processes in the body as well as the control of the central nervous system. Therefore, it is crucial to accurately monitor dopamine concentrations in organisms in order to comprehend their biological roles and make correct clinical diagnoses. In this work, we describe the development of an aptamer sensor utilizing gold electrodes and cyclic voltammetry. Using a self-assembly approach, a single-chain sulfhydrylated dopamine-specific aptamer was immobilized on the surface of a gold electrode to successfully create the aptamer sensor. Voltammetry was used to do a thorough electrochemical characterization in order to assess the sensor’s performance. According to the findings, the created electrochemical sensor demonstrated outstanding analytical capabilities for the detection of dopamine, including a wide linear response range, a very low detection limit, high sensitivity, and great selectivity. These characteristics make the sensor a novel approach for the quick and precise detection of dopamine, and it is anticipated that clinical diagnostics and biological research will use it extensively.展开更多
The current major issue in improving detection sensitivity and selectivity is to design an electrochemical sensor that does not require PCR amplification for nucleic acid identification and measurement. Because of the...The current major issue in improving detection sensitivity and selectivity is to design an electrochemical sensor that does not require PCR amplification for nucleic acid identification and measurement. Because of their great sensitivity, precision, and simplicity of downsizing, electrochemical biosensors have emerged as a research hotspot in the field of nucleic acid detection. The CRISPR/Cas12 system has emerged as a potent tool for nucleic acid detection due to its powerful cleavage activity and selectivity. Specific electrode changes combined with the CRISPR/Cas12 system can greatly improve the performance of electrochemical biosensors. In this study, the design concepts of electrochemical biosensors based on the CRISPR/Cas12 system and their application advancements in nucleic acid detection are discussed.展开更多
Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was ...Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.展开更多
文摘Dopamine is an important neurotransmitter and biomarker that is involved in many physiological processes in the body as well as the control of the central nervous system. Therefore, it is crucial to accurately monitor dopamine concentrations in organisms in order to comprehend their biological roles and make correct clinical diagnoses. In this work, we describe the development of an aptamer sensor utilizing gold electrodes and cyclic voltammetry. Using a self-assembly approach, a single-chain sulfhydrylated dopamine-specific aptamer was immobilized on the surface of a gold electrode to successfully create the aptamer sensor. Voltammetry was used to do a thorough electrochemical characterization in order to assess the sensor’s performance. According to the findings, the created electrochemical sensor demonstrated outstanding analytical capabilities for the detection of dopamine, including a wide linear response range, a very low detection limit, high sensitivity, and great selectivity. These characteristics make the sensor a novel approach for the quick and precise detection of dopamine, and it is anticipated that clinical diagnostics and biological research will use it extensively.
文摘The current major issue in improving detection sensitivity and selectivity is to design an electrochemical sensor that does not require PCR amplification for nucleic acid identification and measurement. Because of their great sensitivity, precision, and simplicity of downsizing, electrochemical biosensors have emerged as a research hotspot in the field of nucleic acid detection. The CRISPR/Cas12 system has emerged as a potent tool for nucleic acid detection due to its powerful cleavage activity and selectivity. Specific electrode changes combined with the CRISPR/Cas12 system can greatly improve the performance of electrochemical biosensors. In this study, the design concepts of electrochemical biosensors based on the CRISPR/Cas12 system and their application advancements in nucleic acid detection are discussed.
基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110152,2022A1515240007,and 2023A1515010562)Special Fund for the Sci-tech Innovation Strategy of Guangdong Province(STKJ202209083,STKJ202209066,2020ST006,210719165864287)+4 种基金Characteristic Innovation Project of Colleges and Universities in Guangdong(2021KTSCX030)Scientific Research Foundation of Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center(QD2221007)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG01A)STU Scientific Research Initiation Grant(NTF20005,NTF22018)Science and technology program of Guangzhou(202102021110).
文摘Photothermal conversion attracted lots of attention in the past years and sorts of materials were explored to enhance photothermal efficiency.In the past years,solar-driven desalination by photothermal conversion was proposed to release the shortage of fresh water and then it was considered much more important to prepare photothermal materials on large scales with high performance and low cost.In this review,we summarized the works on carbon-based photothermal materials in the past years,including the preparation as well as their application in steam generation.From these works,we give an outlook on the difficulties and chances of how to design and prepare carbon-based photothermal materials.