运用杂化密度泛函B3LYP方法,在6-31G*水平上优化得到了一种Mg _(12) B _(24)团簇的笼状稳定结构,其IR最强吸收峰位于205.23 cm^(-1),Raman谱的最强峰位于242.63 cm^(-1).Mg _(12) B _(24)团簇笼状结构中B原子主要是sp杂化轨道参与成键,M...运用杂化密度泛函B3LYP方法,在6-31G*水平上优化得到了一种Mg _(12) B _(24)团簇的笼状稳定结构,其IR最强吸收峰位于205.23 cm^(-1),Raman谱的最强峰位于242.63 cm^(-1).Mg _(12) B _(24)团簇笼状结构中B原子主要是sp杂化轨道参与成键,Mg原子主要是s轨道参与成键.团簇中B原子层堆积了大量的电子,表明MgB 2的超导作用主要发生在B原子层;B原子层电子存在较强的离域性,也为超导电性提供了条件;Mg原子起了提供电子的作用.展开更多
Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seism...Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.展开更多
文摘运用杂化密度泛函B3LYP方法,在6-31G*水平上优化得到了一种Mg _(12) B _(24)团簇的笼状稳定结构,其IR最强吸收峰位于205.23 cm^(-1),Raman谱的最强峰位于242.63 cm^(-1).Mg _(12) B _(24)团簇笼状结构中B原子主要是sp杂化轨道参与成键,Mg原子主要是s轨道参与成键.团簇中B原子层堆积了大量的电子,表明MgB 2的超导作用主要发生在B原子层;B原子层电子存在较强的离域性,也为超导电性提供了条件;Mg原子起了提供电子的作用.
基金supported by the National Science and Technology Major project(No.2016ZX05024001003)the Innovation Consortium Project of China Petroleum,and the Southwest Petroleum University(No.2020CX010201).
文摘Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.