In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on...In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and ki- netic equation were established based on experimental results. Being different f^om previous models, this model suggests that nitrogen diffu- sion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.展开更多
A review of the periodic layered structure (PLS) formed during reactive diffusion was presented. The formation of PLS is a very interesting and complex phenomenon during the reactive diffusion process. It was firstl...A review of the periodic layered structure (PLS) formed during reactive diffusion was presented. The formation of PLS is a very interesting and complex phenomenon during the reactive diffusion process. It was firstly discovered occasionally. The formation of PLS has been reported in various solid state diffusion couples such as Zn/ Ni3 Si, Mg/SiO2, Zn/Cux Tiy and so on, and some controversial theoretical models and formation mechanism of PLS were put forward. However, there have been few reports about the PLS formed during hot dip. The development of PLS was reviewed, and the recent progress referring to the formation of PLS during the hot dip aluminizing of a no- vel Fe-Cr-B cast steel was especially introduced. However, not all of the borides could form PLS in their interracial reaction with molten Al. PLS only formed at the Cr-rich Fe2B/Al interface, while Mo-rich Fe2B fractured. A general qualitative description for the interracial reaction of Fe-Cr-B cast steel with molten Al was represented. Further inves- tigation on the constituents of the alternating phases and formation mechanism of PLS needs to be done. At last, the development trends of PLS were proposed.展开更多
基金financially supported by the National Key Technology Support Program (No.2007BAE05B02)
文摘In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and ki- netic equation were established based on experimental results. Being different f^om previous models, this model suggests that nitrogen diffu- sion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.
基金Item Sponsored by National Natural Science Foundation of China(51404084)Scientific Research Foundation of Hainan University of China(hyqd1629)Opening Project of Guangdong Key Laboratory for Advanced Metallic Materials Processing(South China University of Technology)of China(GJ201609)
文摘A review of the periodic layered structure (PLS) formed during reactive diffusion was presented. The formation of PLS is a very interesting and complex phenomenon during the reactive diffusion process. It was firstly discovered occasionally. The formation of PLS has been reported in various solid state diffusion couples such as Zn/ Ni3 Si, Mg/SiO2, Zn/Cux Tiy and so on, and some controversial theoretical models and formation mechanism of PLS were put forward. However, there have been few reports about the PLS formed during hot dip. The development of PLS was reviewed, and the recent progress referring to the formation of PLS during the hot dip aluminizing of a no- vel Fe-Cr-B cast steel was especially introduced. However, not all of the borides could form PLS in their interracial reaction with molten Al. PLS only formed at the Cr-rich Fe2B/Al interface, while Mo-rich Fe2B fractured. A general qualitative description for the interracial reaction of Fe-Cr-B cast steel with molten Al was represented. Further inves- tigation on the constituents of the alternating phases and formation mechanism of PLS needs to be done. At last, the development trends of PLS were proposed.