Reconstruction of osteochondral(OC)defects represents an immense challenge due to the need for synchronous regeneration of special stratified tissues.The revolutionary innovation of bioprinting provides a robust metho...Reconstruction of osteochondral(OC)defects represents an immense challenge due to the need for synchronous regeneration of special stratified tissues.The revolutionary innovation of bioprinting provides a robust method for precise fabrication of tissue-engineered OCs with hierarchical structure;however,their spatial living cues for simultaneous fulfilment of osteogenesis and chondrogenesis to reconstruct the cartilage-bone interface of OC are underappreciated.Here,inspired by natural OC bilayer features,anisotropic bicellular living hydrogels(ABLHs)simultaneously embedding articular cartilage progenitor cells(ACPCs)and bone mesenchymal stem cells(BMSCs)in stratified layers were precisely fabricated via two-channel extrusion bioprinting.The optimum formulation of the 7%GelMA/3%AlgMA hydrogel bioink was demonstrated,with excellent printability at room temperature and maintained high cell viability.Moreover,the chondrogenic ability of ACPCs and the osteogenic ability of BMSCs were demonstrated in vitro,confirming the inherent differential spatial regulation of ABLHs.展开更多
Two-dimensional (2D) nanomaterials have gained tremendous attention in the field of biomedicine because of their high specific surface areas and fascinating physicochemical properties. Herein, 2D monolayered double ...Two-dimensional (2D) nanomaterials have gained tremendous attention in the field of biomedicine because of their high specific surface areas and fascinating physicochemical properties. Herein, 2D monolayered double hydroxide (MLDH) nanosheets were employed to localize doxorubicin (DOX), an anticancer drug, with a loading capacity of as high as 3.6 mg.mg-1 (w/w). Structural characterizations and theoretical calculations indicate that the DOX molecule is uniformly arranged and oriented at the surface of the MLDHs with a binding energy of 15.90 eV, showing significant electrostatic interaction. With the assistance of the targeting agent folic acid (FA), DOX-FA/MLDHs demonstrate targeted cellular uptake and superior anticancer behavior based on in vitro tests performed with cancer cells. In addition, this composite material exhibits a selective release toward cancer cells and good biocompatibility with normal cells, which would guarantee its practical applications in cancer therapy.展开更多
基金This work was supported by grants from the National Key R&D Program of China(Grant Nos.2018YFA0703100 and 2022YFC2502902)the National Nature Science Foundation of China(Grant Nos.82072442,82272494,82072082,32122046,32101102)+3 种基金the Orthopaedic Medical Innovation Center of Jiangsu(CXZX202209)Key Laboratory of Orthopaedics of Suzhou(SZS2022017)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Shenzhen Fundamental Research Foundation(Grant Nos.JSGG20210629144537007,JCYJ20210324115814040,and JCYJ20210324113001005).
文摘Reconstruction of osteochondral(OC)defects represents an immense challenge due to the need for synchronous regeneration of special stratified tissues.The revolutionary innovation of bioprinting provides a robust method for precise fabrication of tissue-engineered OCs with hierarchical structure;however,their spatial living cues for simultaneous fulfilment of osteogenesis and chondrogenesis to reconstruct the cartilage-bone interface of OC are underappreciated.Here,inspired by natural OC bilayer features,anisotropic bicellular living hydrogels(ABLHs)simultaneously embedding articular cartilage progenitor cells(ACPCs)and bone mesenchymal stem cells(BMSCs)in stratified layers were precisely fabricated via two-channel extrusion bioprinting.The optimum formulation of the 7%GelMA/3%AlgMA hydrogel bioink was demonstrated,with excellent printability at room temperature and maintained high cell viability.Moreover,the chondrogenic ability of ACPCs and the osteogenic ability of BMSCs were demonstrated in vitro,confirming the inherent differential spatial regulation of ABLHs.
文摘Two-dimensional (2D) nanomaterials have gained tremendous attention in the field of biomedicine because of their high specific surface areas and fascinating physicochemical properties. Herein, 2D monolayered double hydroxide (MLDH) nanosheets were employed to localize doxorubicin (DOX), an anticancer drug, with a loading capacity of as high as 3.6 mg.mg-1 (w/w). Structural characterizations and theoretical calculations indicate that the DOX molecule is uniformly arranged and oriented at the surface of the MLDHs with a binding energy of 15.90 eV, showing significant electrostatic interaction. With the assistance of the targeting agent folic acid (FA), DOX-FA/MLDHs demonstrate targeted cellular uptake and superior anticancer behavior based on in vitro tests performed with cancer cells. In addition, this composite material exhibits a selective release toward cancer cells and good biocompatibility with normal cells, which would guarantee its practical applications in cancer therapy.