Over the past decade,there has been notable progress in the systemic treatment of liver cancer.However,despite the emergence of new therapeutic strategies,they have not universally achieved success,with patients affli...Over the past decade,there has been notable progress in the systemic treatment of liver cancer.However,despite the emergence of new therapeutic strategies,they have not universally achieved success,with patients afflicted by liver diseases frequently displaying resistance to these treatments(1).Consequently,liver cancer remains a global health challenge,and hepatocellular carcinoma(HCC)stands as the fourth most common cause of cancer-related deaths globally,constituting 80-90%of primary liver cancer cases(2,3).This poses a substantial threat to both the survival and overall well-being of individuals.展开更多
Fast and accurate acquisition of positive sequence components of unbalanced grid voltage is an essential requirement to ensure the safety operation of the grid-connected inverter.To improve the extraction speed of pos...Fast and accurate acquisition of positive sequence components of unbalanced grid voltage is an essential requirement to ensure the safety operation of the grid-connected inverter.To improve the extraction speed of positive sequence components of unbalanced voltage,this study proposes a sampling period delay filter(SPDF)to quickly separate positive and negative sequence components by delaying two sampling periods of grid voltage in dq frame.With the SPDF method,only one coordinate transformation is required and the computational burden can be reduced apparently.Then,the noise immunity performance of the proposed SPDF algorithm is investigated;and the corresponding solution,operation period delay filter(OPDF),can guarantee the desired fast response performance under the premise of limiting the amplified noise within the acceptable range.Finally,the feasibility and priority of the above two algorithms have been verified by the simulation and experimental results.展开更多
Outdated testing methods hinder the success rate of carbonized cable preparation in low-voltage arc fault tests,leading to incomplete tests and high failure rates.To address this issue,we finely categorized the prepar...Outdated testing methods hinder the success rate of carbonized cable preparation in low-voltage arc fault tests,leading to incomplete tests and high failure rates.To address this issue,we finely categorized the preparation results of carbonized cable specimens by analyzing the experimental phenomena during the carbonization process and assessing the impact of high-voltage energization time on the outcomes,presenting a process control strategy aimed at optimizing the preparation results of carbonized cable specimens.This method utilizes three periodic moving algorithms(root-mean-square,average,and shoulder percentage)to classify the cable specimens into four preparation categories:open-circuit carbonization,under-carbonization,short-circuit carbonization,and successful carbonization.The high-voltage energization time during carbonization or secondary carbonization was adjusted to optimize the preparation of the carbonized cables by considering different discrimination outcomes.Finally,the proposed method was tested on a purpose-built carbonized cable experimental platform,which confirmed its effectiveness in differentiating the preparation outcomes of the carbonized cable specimens and improving the success rate of the carbonized cable preparation.The proposed method has significant potential for application in low-voltage arc fault test systems.展开更多
基金supported by the National Natural Science Foundation of China(No.32271470).
文摘Over the past decade,there has been notable progress in the systemic treatment of liver cancer.However,despite the emergence of new therapeutic strategies,they have not universally achieved success,with patients afflicted by liver diseases frequently displaying resistance to these treatments(1).Consequently,liver cancer remains a global health challenge,and hepatocellular carcinoma(HCC)stands as the fourth most common cause of cancer-related deaths globally,constituting 80-90%of primary liver cancer cases(2,3).This poses a substantial threat to both the survival and overall well-being of individuals.
基金The work was supported by the National Natural Science Foundation of China(51707091).
文摘Fast and accurate acquisition of positive sequence components of unbalanced grid voltage is an essential requirement to ensure the safety operation of the grid-connected inverter.To improve the extraction speed of positive sequence components of unbalanced voltage,this study proposes a sampling period delay filter(SPDF)to quickly separate positive and negative sequence components by delaying two sampling periods of grid voltage in dq frame.With the SPDF method,only one coordinate transformation is required and the computational burden can be reduced apparently.Then,the noise immunity performance of the proposed SPDF algorithm is investigated;and the corresponding solution,operation period delay filter(OPDF),can guarantee the desired fast response performance under the premise of limiting the amplified noise within the acceptable range.Finally,the feasibility and priority of the above two algorithms have been verified by the simulation and experimental results.
基金Supported by the National Natural Science Foundation of China(52277136)the University Production-Study Cooperation Project of Science and Technology Department of Fujian Province(2021Y4002)+1 种基金the 2018 Funding Program for Leading Talents in Scientific and Technological Innovation of Fujian(038000387024)Natural Science Foundation of Fujian Province(2020J05170).
文摘Outdated testing methods hinder the success rate of carbonized cable preparation in low-voltage arc fault tests,leading to incomplete tests and high failure rates.To address this issue,we finely categorized the preparation results of carbonized cable specimens by analyzing the experimental phenomena during the carbonization process and assessing the impact of high-voltage energization time on the outcomes,presenting a process control strategy aimed at optimizing the preparation results of carbonized cable specimens.This method utilizes three periodic moving algorithms(root-mean-square,average,and shoulder percentage)to classify the cable specimens into four preparation categories:open-circuit carbonization,under-carbonization,short-circuit carbonization,and successful carbonization.The high-voltage energization time during carbonization or secondary carbonization was adjusted to optimize the preparation of the carbonized cables by considering different discrimination outcomes.Finally,the proposed method was tested on a purpose-built carbonized cable experimental platform,which confirmed its effectiveness in differentiating the preparation outcomes of the carbonized cable specimens and improving the success rate of the carbonized cable preparation.The proposed method has significant potential for application in low-voltage arc fault test systems.