期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Text Classification Using Support Vector Machine with Mixture of Kernel 被引量:1
1
作者 liwei wei Bo wei Bin Wang 《Journal of Software Engineering and Applications》 2012年第12期55-58,共4页
Recent studies have revealed that emerging modern machine learning techniques are advantageous to statistical models for text classification, such as SVM. In this study, we discuss the applications of the support vect... Recent studies have revealed that emerging modern machine learning techniques are advantageous to statistical models for text classification, such as SVM. In this study, we discuss the applications of the support vector machine with mixture of kernel (SVM-MK) to design a text classification system. Differing from the standard SVM, the SVM-MK uses the 1-norm based object function and adopts the convex combinations of single feature basic kernels. Only a linear programming problem needs to be resolved and it greatly reduces the computational costs. More important, it is a transparent model and the optimal feature subset can be obtained automatically. A real Chinese corpus from FudanUniversityis used to demonstrate the good performance of the SVM- MK. 展开更多
关键词 TEXT CLASSIFICATION SVM-MK Feature selection CLASSIFICATION model SVM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部