Grain size influences the yield and quality of rice(Oryza sativa L.),and grain length is one of the component traits of grain size.In this study,a near-isogenic line LB3 with long grain size was constructed using japo...Grain size influences the yield and quality of rice(Oryza sativa L.),and grain length is one of the component traits of grain size.In this study,a near-isogenic line LB3 with long grain size was constructed using japonica rice cultivar 02428,with short grain size,as the recipient parent and indica rice cultivar ZYX,with long grain size,as the donor parent,by multi-generation backcrossing and selfing.BSA-seq was used for preliminary QTL mapping and InDel markers were developed to fine map the locus.The major QTL,tentatively named qGL10,for grain length was located in a 128.45 kb region of chromosome 10.Combined with haplotype analysis of rice varieties,expression pattern analysis of candidate genes suggested LOC_Os10g39130(OsMADS56)as a candidate gene.Sequence alignment of OsMADS56 in 02428 and LB3 revealed that there were 15 SNPs in the promoter region and four in the coding region.Further haplotype analysis suggested that SNP9(G/A)located in the TGTCACA motif might account for the different expression levels of OsMADS56 in 02428 and LB3.These results lay a foundation for the application of qGL10 in molecular breeding of new rice varieties.展开更多
Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 0242...Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 02428 and YZX,two cultivars differing in vigor during early seedling growth,was used for QTL analysis.Nine traits associated with ESV were examined using a high-density map.Of 16 additive loci identified,three were detected in two generations and thus considered stable.Four epistatic interactions were detected,one of which was repeated in two generations.Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL.These results were combined with results from our previous QTL analysis of the germination index.The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed.These two lines showed rapid germination and strong ESV.A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents.The QTL are targets for ESV breeding and the candidate genes await functional validation.This study provides a theoretical basis and a genetic resource for the breeding of directseeded rice.展开更多
基金supported by the Guangdong Provincial Key R&D Program(2021B0707010010)the Key R&D Program of Guangzhou Science and Technology Project(202103000083).
文摘Grain size influences the yield and quality of rice(Oryza sativa L.),and grain length is one of the component traits of grain size.In this study,a near-isogenic line LB3 with long grain size was constructed using japonica rice cultivar 02428,with short grain size,as the recipient parent and indica rice cultivar ZYX,with long grain size,as the donor parent,by multi-generation backcrossing and selfing.BSA-seq was used for preliminary QTL mapping and InDel markers were developed to fine map the locus.The major QTL,tentatively named qGL10,for grain length was located in a 128.45 kb region of chromosome 10.Combined with haplotype analysis of rice varieties,expression pattern analysis of candidate genes suggested LOC_Os10g39130(OsMADS56)as a candidate gene.Sequence alignment of OsMADS56 in 02428 and LB3 revealed that there were 15 SNPs in the promoter region and four in the coding region.Further haplotype analysis suggested that SNP9(G/A)located in the TGTCACA motif might account for the different expression levels of OsMADS56 in 02428 and LB3.These results lay a foundation for the application of qGL10 in molecular breeding of new rice varieties.
基金This research was supported by the Breeding New Varieties of Rice Suitable for Light and Simple Cultivation and Mechanized Production Project(2017YFD0100104)the Research and Development Plan for Key Areas in Guangdong Province(2018B020206002)+1 种基金the China Agriculture Research System(CARS-01-17)Special thanks are due to the South China Agricultural University Doctoral Innovative Talents(Domestic Training)Cultivation Program(CX2019N044)。
文摘Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 02428 and YZX,two cultivars differing in vigor during early seedling growth,was used for QTL analysis.Nine traits associated with ESV were examined using a high-density map.Of 16 additive loci identified,three were detected in two generations and thus considered stable.Four epistatic interactions were detected,one of which was repeated in two generations.Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL.These results were combined with results from our previous QTL analysis of the germination index.The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed.These two lines showed rapid germination and strong ESV.A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents.The QTL are targets for ESV breeding and the candidate genes await functional validation.This study provides a theoretical basis and a genetic resource for the breeding of directseeded rice.